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Gail C. Murphy, Thomas Zimmermann, and Thomas Fritz

Abstract—Developers work on a broad variety of tasks during their workdays and constantly switch between them. While these task
switches can be beneficial, they can also incur a high cognitive burden on developers, since they have to continuously remember and
rebuild the task context–the artifacts and applications relevant to the task. Researchers have therefore proposed to capture task context
more explicitly and use it to provide better task support, such as task switch reduction or task resumption support. Yet, these approaches
generally require the developer to manually identify task switches. Automatic approaches for predicting task switches have so far been
limited in their accuracy, scope, evaluation, and the time discrepancy between predicted and actual task switches. In our work, we
examine the use of automatically collected computer interaction data for detecting developers’ task switches as well as task types. In two
field studies–a 4h observational study and a multi-day study with experience sampling–we collected data from a total of 25 professional
developers. Our study results show that we are able to use temporal and semantic features from developers’ computer interaction data to
detect task switches and types in the field with high accuracy of 84% and 61% respectively, and within a short time window of less than
1.6 minutes on average from the actual task switch. We discuss our findings and their practical value for a wide range of applications in
real work settings.

Index Terms—Task Detection, Task Switching, Multi-Tasking, Work Fragmentation, Activity Recognition, Machine Learning.
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1 INTRODUCTION

To successfully perform their work, software developers
are required to constantly switch between a broad variety
of tasks, such as implementing a new feature, answering
an email or attending a meeting, with each task requiring
its own set of artifacts and applications [1], [2], [3]. These
constant task switches result in a high fragmentation of
work, requiring developers to continuously interrupt and
later resume their tasks and to relocate the artifacts and
applications that are relevant to fulfill the task at hand.
Subsequently, developers face a higher cognitive burden,
lower performance, and a higher error rate [4], [5].

To support developers in their fragmented task work,
researchers have proposed approaches that explicitly capture
task context–artifacts and applications relevant to the task–
and that use this information to then support users by
preventing interruptions, easing task resumption, or by
recommending relevant artifacts and applications [6], [7], [8],
[9], [10], [11]. While studies have shown that the explicitly
captured task context can lower the cognitive burden on
developers and increase productivity [6], [12], all of these
approaches require some form of manual interaction of
the developer to identify task boundaries, something that
developers often forget to do in practice after using such an
approach for a few days [6].

To address this issue, few researchers have proposed
approaches to automatically detect switches between tasks,
varying mainly in the features used (e.g. user input or
application based), and the method applied (e.g. supervised
versus unsupervised machine learning) [13], [14], [15]. Yet,

• A.N. Meyer, M. Züger and T. Fritz are with the Department of Informatics,
University of Zurich. E-mail: {ameyer, zueger, fritz}@ifi.uzh.ch.

• C. Satterfield and G.C. Murphy are with the University of British Columbia.
E-mail: {cds00, murphy}@cs.ubc.ca.

• K. Kevic and T. Zimmermann are with Microsoft Research. E-mail:
{kakevic, tzimmer}@microsoft.com.

Manuscript submitted June 14, 2019. Revised March 19, 2020.

the evaluations performed to study these approaches are
often fairly limited in terms of the tasks and number of
participants, and the results show that it is very challenging
to achieve high prediction accuracy of task switches without
too many false positives [15], [16], [17], or that one has to
accept a high deviation in time of 3 to 5 minutes between
predicted and actual task switches [13], [14], [18]. Since these
approaches focus on detecting task switches within the IDE
only, they are not capturing non-development work, which
can account for 39% up to 91% of the time developers spend
at work [1], [3], [19], [20], [21].

In our research, we extend this work and investigate
(RQ1) whether we can automatically detect task switches
of professional software developers in the field, based on
temporal and semantic features as extracted from their
computer interaction inside and outside the IDE. We were
also interested in classifying the type of task a developer is
working on, since the better we understand the context of
a task, the better we can support developers. To the best of
our knowledge, there has been only one approach so far that
looked at the automatic classification of developers’ activities
on a task level [22]. Yet, their examination was limited to
specific development activities only, and did not consider the
whole range of non-development tasks that developers are
working on, such as administrative or planning tasks. In our
work, we investigate the task types that software developers
are working on more holistically, and explore (RQ2) how
accurately we can predict them in the field.

To address our research questions, we performed two
field studies: one with 12 professional developers in which
we observed their work over a 4-hour period and logged the
task switches and types without interrupting their work; and
one with 13 professional developers in which we regularly
prompted participants to self-report their task switches and
types over a period of about 4 workdays and conducted a
post-study questionnaire. By varying the study methods, we
wanted to achieve a higher generalizability of our results and
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ensure that we take into account the effects of self-reporting
while also capturing the breadth of developers’ tasks over
multiple days. For both field studies, we also collected the
participants’ computer interaction using a monitoring tool
that we installed on their machine and that was running
in the background. From the computer interaction data, we
extracted a total of 109 temporal and semantic features. Our
analysis of the data shows we can use the automatically
logged computer interaction data to train machine learning
classifiers and predict task switches with a high accuracy
of 87%, and within a short time window of less than 1.6
minutes of the actual task switch. Our analysis further shows
that we are able to predict task types with an accuracy of
61%, yet that this accuracy varies a lot by task type. The
features based on mouse and keyboard interaction generally
hold the highest predictive power, while the lexical features
we extracted from the application names and window titles
have the least predict power in our approach.

Overall, our work extends previous work with an ap-
proach that uses a broader range of features, also works
outside the IDE to capture developers’ work more holistically,
is evaluated in a field-study with 25 professional developers,
and achieves higher accuracy and less delay than previous
work. Our results provide evidence for the potential to
automatically detect software developers’ task switches and
types in the field. This opens up opportunities for providing
developers with task support tools that lower the burden of
fragmented work and constant task switching, by reducing
task switching and facilitating task resumption, and by
greatly complementing existing task support by freeing
the developer from the laborious manual task boundary
identification.

The primary contributions of this paper are:
• An approach to automatically detect task switches and

types based on developers’ computer interaction that is
not limited to the IDE.

• Two field studies with 25 professional developers
demonstrating our approach’s potential to detect task
switches and types with high accuracy and within a
small time window in the field.

• An evaluation of the predictive power of various
computer interaction features, including semantic and
temporal ones, and a comparison of individually trained
models versus a general model.

2 RELATED WORK

Work related to our research can broadly be grouped into
research that examined the detection of task switches and
task types, and into approaches to support task focused
work. Based on previous work [2], [6], [23], [24], [25], [26], we
defined a task as a well-defined work assignment with a specific
goal that people divide their work into, such as fixing a bug, or
preparing for a team-meeting. A task switch occurs, when a
person switches between two different tasks.

2.1 Task Switch Detection
Several researchers have explored the detection of task
switches mostly for general knowledge workers. These
approaches mainly differ in the features they used to identify
the task boundaries or switches, ranging from semantic
features to temporal features, the method they use, unsuper-
vised versus supervised, and the way they evaluated their

approach. One of the most prominent approaches is by Shen
et al. [13], [14], [16], [18] that is mainly based on semantic
features and supervised learning. They reused an approach,
TaskTracer [7], that allows users to manually indicate the
tasks they are working on, and additionally tracks their ap-
plication interactions in the background, including window
titles. Based on the assumption that windows of the same task
share common words in their titles, they create vectors from
window titles and identify task switches based on a textual
similarity measure using the users’ previously declared tasks
and supervised learning. After the first version [18], they
further improved their approach to reduce the number
of false positives and to be able to predict task switches
online [13], [14]. Their evaluation is based on a small set of
two users and counts a task switch as accurate if it falls within
a 4 to 5 minute time window of a real switch, which is a very
coarse measure, given the frequent task switching in today’s
environment that happen every few minutes [2], [23]. Based
on the assumption that switches between windows of the
same task occur more frequently in temporal proximity than
to windows of a different task, Oliver et al. [27] examined
a temporal feature of window switches within a 5 minute
time window in addition to semantic features and using an
unsupervised approach. An evaluation based on 4 hours of
a single participant, showed a precision of 0.49 and recall
of 0.72. Researchers have also used other temporal features,
in particular, the frequency of window events, to determine
task switches. Under the assumption that users navigate
between windows more frequently when they switch tasks,
as opposed to during a task, Nair et al. [17] developed
a system that calculates window event frequency based
on fixed 5 minute time windows. An evaluation with 6
participants resulted in an accuracy of 50%. Mirza et al. [15]
relaxed the constraint of a fixed time window, used adjusted
frequency averages and studied the various approaches
with 10 graduate students. They found that their approach
improved the accuracy and achieved an overall accuracy of
58%. Overall, previous research has shown that detecting
task switches is difficult, even for very short periods of time
and in controlled environments. In our work, we focus on
software development work and extend these approaches
by including and examining both, semantic and temporal
features of window events as well as user input features,
and by conducting two studies with professional software
developers.

Only little research has been performed on task switch
detection in the software development domain and all of
this research has focused solely on software development
tasks within the IDE. As one of the first, Robillard and
Murphy [28] proposed to use program navigation logs
to infer development tasks and they built a prototype,
however, without evaluating it. In 2008, Coman and Sillitti
[29] focused on splitting development sessions into task-
related subsections based on temporal features of developers’
access to source code methods and evaluated their approach
with 3 participants over 70 minutes each, finding that they
can get close to detecting the number of task switches, yet the
point in time when the task happens is a lot more difficult.
Zou and Godfrey [30] replicated Coman and Sillitti’s study
in an industrial setting with six professional developers and
found that the algorithm detects many more task switches
than the ones self-reported by the participants with an error
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of more than 70%. Finally, on a more fine-grained level, Kevic
and Fritz [31] examined the detection of activity switches
and types within a change task using semantic, temporal
and structural features. In two studies with 21 participants,
they found that activity switches as well as the six self-
identified activity types can be predicted with more than 75%
accuracy. Different to these approaches, we focus on all tasks
a developer works on during a day, not just the change tasks
within the IDE.

2.2 Task Type Detection

Researchers also examined detecting the type of task or
activity a person is working on. Most similar to our approach
for task type detection is Koldijk et al. [32]. They investigated
the use of features over a fixed 5 minute time window, using
mouse and keyboard input, application (switches) and the
time of day. They tried to predict one of 12 task types that
they identified in a survey, e.g. read email, write email, plan,
program, search information, and create visualization. The
results of a field study with 11 researchers and an average
of 10 hours of data per participant shows that the prediction
is very individual and that a general classifier does not
work well. Mirza et al. [33] focused on classifying users’
desktop interactions into six higher level activity types (not
task types): writing, reading, communicating, web browsing,
system browsing and miscellaneous. They used temporal,
interaction-based (application window events), and semantic
features calculated over a 5 minute time window. In a 6 hour
field study with five participants and a controlled lab study,
they found that they can predict the activity category for each
of these 5 minute windows with high accuracy (81%) and
that interaction-based features work best. Researchers have
also explored biometric features, such as Hassib et al. [34]
who used Electroencephalography to classify the task type
according to cognitive load, but without looking at specific
task types. In our work, we extend these approaches by not
fixating on fixed time windows of 5 minutes but by first
detecting the actual switches and then evaluating them with
professional developers in the field.

We have been able to find only very little research on
predicting task types for software developers. To the best
of our knowledge, the only approach that is similar to our
work is by Bao et al. [22]. In their work, they automatically
track low-level computer interaction data (user input and
application usage) and use a Conditional Random Field
(CRF) based approach to segment the data and infer one
of six development activities–coding, debugging, testing,
navigation, search, or documentation–similar to our task
types. An analysis of data collected from ten developers over
a week shows that CRF is able to classify the activity with
73% accuracy. We extend the approach by focusing on all
activities developers perform during their workday, not just
development, and by examining when developers switch
between different tasks.

2.3 Task Support

While there is a vast number of approaches to support
specific development activities, such as code search, code
review or debugging, only little research has looked into
supporting developers with understanding and managing
their tasks and the frequent switches between them. Several

researchers have therefore proposed to explicitly model
development tasks and to capture task contexts–artifacts
and applications relevant to a task–to support developers
in their task work, in particular by recommending relevant
artifacts [6], [8], identifying related tasks [35], easing the
resumption of interrupted tasks and switching between
them [6], [7], [9], [10], [11], [12], [36], [37], [38], or scoping
queries and recommending workflow improvements [5].
Early approaches to support task switching, such as virtual
workspaces [10] or the GroupBar [9], provide interfaces that
allow the user to manually group artifacts and applications
with respect to tasks. The approaches Mylyn by Kersten
and Murphy [6], and TaskTracer by Dragunov et al. [7], both
explicitly capture task context by automatically recording
user interactions within the IDE or the desktop environment
respectively, given the user manually indicates the start
and end of a task. While several of these approaches have
great potential to support developers in their task work,
they require some form of manual interaction to identify
the task boundaries, something that developers often forget
to do after using such a tool for a while [6]. Researchers
have therefore examined how to best aid developers in
identifying task boundaries retrospectively [39], looked into
more lightweight approaches for supporting task resumption
through cues and without specific task context [40], or
explored the automatic mining of task contexts to support
window switching [38] and grouping files [37]. Overall, an
automatic and real-time task switch detection has thereby
the potential to complement and significantly improve the
value of most of these existing approaches for developers.

3 STUDY DESIGN

To investigate the use of computer interaction data for
predicting task switches and types, we conducted two field
studies, a 4-hour observational study and a multi-day study
with experience sampling, with a total of 31 professional
software developers initially. The observations and self-
reports served as the ground truth of participants’ task
switches and types, while we additionally gathered computer
interaction data to extract features for our predictions. In both
studies, we used the same definitions of tasks, task switches
and types which we also shared with the participants. A
brief overview of our study design is presented in Figure 1.

3.1 Study 1 – Observations
In our first study, we observed the work of 12 participants
over a period of 4 hours to gather a richer understanding of
developers’ task switches and types they work on.

PROCEDURE For the observations, the observer, either
the first or second author, followed a detailed protocol that
we developed before the study. The very first observation
session was performed by both observers at the same time. A
cross-check of the two observation logs showed an inter-rater
agreement of 97%, suggesting a high overlap of observing
the same tasks and task switches.

Before each observation session, the observer explained
the study purpose and process to the participants and asked
them to sign a consent form, to install a monitoring tool that
tracks participants’ computer interaction, and to describe the
tasks they were planning to work on during the observation.
The observer also introduced herself to nearby colleagues
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Fig. 1. Overview of the study design and outcomes.

and asked them to ignore her as much as possible, and
collaborate with the observed participant as they would
normally do. After that, the observer placed herself behind
the participant to prevent distractions, while still being able
to see the screen contents on the participant’s computer.
Finally, the observer started the actual observation session
and asked the participant to continue their work as usual.

We observed participants for a total of four hours each
on a single workday: two hours before and two after lunch.
For the observations, we followed Mintzberg’s protocol of
a structured observation session [41]. The observer wrote in
an observation log 1 each time the participant switched from
one task to another. Each entry in the observation log consists
of a timestamp, a description of the reason for the task switch
and a description of the task itself. We inferred tasks and
their details from the active programs and their contents
on the screen, as well as discussions participants had with
co-workers. After each session, the observer validated the
observed tasks and task switches with the participant, by
going through the list of observed tasks and accompanying
notes and modifying mistakes made during the observation.

PARTICIPANTS We recruited 14 participants through
professional and personal contacts from two large-sized and
one medium-sized software companies. We excluded two
participants for which we were not able to observe a sufficient
amount of task switches (less than 10). Of the remaining 12
participants, 1 was female and 11 were male. Throughout
the paper, we refer to these participants as P1 to P12. Our
participants had an average of 10.8 (±7.4, ranging from 1 to
20) years of professional software development experience
and were working in different roles: 8 participants identified
themselves as individual contributors and 4 as developers in
a leading position. All participants resided either in Canada
or the United States.

MONITORING TOOL To collect computer interaction
data from developers, we developed and used our own

1. We used our own observation logging tool: https://github.com/
casaout/ObservationStudyTool

monitoring tool, PersonalAnalytics 2, for the Windows
operating system. The tool tracks participants’ mouse and
keyboard interaction, as well as their application usage.
For the mouse, the tool tracks the clicks (coordinates and
button), the movement (coordinates and moved distance in
pixels), and the scrolling (coordinates and scrolled distance
in pixels) along with the corresponding time-stamp. For
the keyboard, the tool records the type of each keystroke
(regular, navigating, or backspace/delete key) along with
the corresponding time-stamp. For privacy reasons, we did
not record specific keystrokes. Our tool further records the
currently active application, along with the process name,
window title, and time-stamp whenever the window title
changed or the user switched to another application.

TASK TYPE INFERENCE We inferred task type categories
by performing a Thematic Analysis [43] on the basis of
related work and our observation logs. The analysis process
included first familiarizing ourselves with the observed
task switches, open coding the observed and participant-
validated tasks and accompanying notes, identifying themes,
and categorizing the resulting themes into higher level task
types. This process resulted in nine task type categories: De-
velopment, Personal, Awareness & team, Administrative, Planned
meeting, Unplanned meeting, Planning, Other and Study. The
task types are described in more detail in Table 4 and
discussed in Section 6.1. In contrast to a task (and the task
type), an activity describes an event or happening that does
not necessarily need to have a particular purpose (or task).
For example, the activity Web Browsing, could be grouped into
several task types, such as Development when the developer
is reading API documentation online and Planned meeting
when the developer is using an online-conferencing tool.

3.2 Study 2 – Self-Reports

To capture a longer time period and more breadth in
developers’ work, we conducted a second field study with
13 participants over a period of 4 workdays each. For
this study, we used experience sampling, in particular we
regularly prompted participants to self-report task switches
and types. By using experience sampling, we also wanted to
mitigate the risk of a bias in participants’ behavior due to an
observer sitting behind them, which, for example, could lead
to participants being less likely to browse work unrelated
websites.

PROCEDURE Before the study, we emailed participants a
document explaining the study goal and high-level proce-
dure, asked them to sign a consent form and to answer a pre-
study questionnaire with questions on demographics, their
definition of a task, reasons for switching between tasks, and
on the task types they are usually working on. Afterwards,
participants received the study instructions, detailing the
study goals, definitions of task switches and types that we
used for the study, and instructions on how to install and run
the monitoring tool. They were asked to install the same
monitoring tool that we described above on their main
computer. In case participants worked on multiple computers
(e.g. a desktop and a laptop), we asked them to install the
monitoring tool on both devices. Participants were further
asked to read our definitions of a task, task switch and task

2. https://github.com/sealuzh/PersonalAnalytics. Details can be
found in [42].
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type, as well as instructions on how to use the self-reporting
component that we added to our monitoring tool. Finally,
participants were asked to pursue their work as usual for the
next couple of workdays while also self-reporting their task
switches and types when the pop-ups/prompts appeared.

For this study, our tool prompted participants once per
hour to self-report their task switches and types for the
previous hour. The self-reporting step is explained in more
detail below. We intentionally decided to use an interval of
one hour rather than a full day, to balance the intrusiveness
of the prompts with the ability to accurately remember
tasks and task switches over the previous time interval [44].
To further ensure high quality in the collected self-report
data we further allowed participants to withdraw from
the study at any point in time, and to pick the time for
their participation themselves. In addition, and to avoid
boredom or fatigue, we asked participants to respond to
a total of 12 to 15 prompts, assuming an average of four
self-reports per day and a total of three to four workdays
for participation. This number was a result of several test-
runs over multiple weeks and from qualitative feedback
gathered with a pilot participant, a professional developer.
Furthermore, we provided support to postpone self-report
prompts for 5 minutes, 15 minutes, or 6 hours, and built and
refined the self-reporting component to require as little effort
as possible to answer, e.g. by letting participants answer
the required fields by simply clicking on elements instead of
asking them for textual input. Finally, each pop-up also asked
participants to report their confidence with their self-reports.

Throughout the study, participants could check the
number of completed pop-ups. Once they completed 12 pop-
ups, participants could notify us and upload the collected
data and self-reports to our server. The upload wizard once
again described the data collected and allowed participants
to obfuscate the data before sharing it with us. At the end
of the study, participants were asked to answer a post-study
questionnaire with questions on the experienced difficulties
when self-reporting task switches and task types, on further
task types they were working on, and on how they could
imagine using information on task switches and types. After
completing the survey, participants were given two 10 US$
meal cards to compensate for their efforts.

PARTICIPANTS We recruited 17 participants through
professional and personal contacts from one large-sized
software company. We discarded data from three participants
that self-reported less than 10 task switches in the days of
their participation. We further discarded the data of one par-
ticipant whose definition of a task switch was very different
to ours and the rest of the participants (i.e. he considered
every application switch a task switch). Of the remaining
13 participants that we used for the analysis, 2 were female
and 11 were male. Our participants had an average of 12.1
(±8.2, ranging from 1 to 30) years of professional software
development experience and were working in different roles:
10 identified themselves as individual contributors and 3 as
developers in a leading position (i.e. Lead or Manager). All
participants resided in the United States. In the paper, we
refer to these participants as P13 to P25.

SELF-REPORTING COMPONENT The self-reporting com-
ponent is part of our monitoring tool and includes a pop-up
with three pages. The first page asked participants to self-
report the task switches they experienced in the past hour.
It visualized participants’ application usage on a timeline

using different colors for each application and allowed them
to self-report their task switches by clicking on the lines
denoting applications switches. We restricted the task switch
self-reports to a granularity of application switches with
a minimum length of 10 seconds for a variety of reasons:
First, we assumed that most of participants’ task switches
coincide with application switches (e.g. switching from the
email client to the IDE, or from the browser to an IM
client) and fewer happen during a session uniquely spent
within the same application (e.g. switching tasks directly
in the IDE or in the browser). And, we wanted to avoid
cluttering the user interface of our self-reporting component
and simplify the reporting for participants. Similar to [14],
the timeline visualization provided additional details when
the participant hovers over an application, such as the
application name, time when it was used, window title(s)
and user input produced in that application. As soon as
participants completed self-reporting their task switches for
the whole previous hour, they could proceed to the second
page and self-report their task types (see Figure 2). On the
second page, we visualized the same timeline as before, but
added another row that prompted participants to select task
types from a drop-down menu. After selecting the task types
for all task segments, participants could proceed to the last
page. The third page asked participants to self-report their
confidence with their self-reports of task switches and task
types on a 5-point Likert-scale (5: very confident, 1: not at
all confident) and optionally add a comment. Capturing
participants’ confidence served as an indicator of the quality
and accuracy of their self-reports. The user interface we
used to collect the ground truth for task switches and types
resembles the one by Mirza et al. [15], [25], [33].

The supplementary material [45] includes the study
instructions we shared with participants, the pre- and
post-study questionnaires they answered and additional
screenshots detailing the self-reporting component.

4 DATA AND ANALYSIS

For this study, we collected two rich data sets, including
observed or self-reported ground truth data, and automat-
ically tracked computer interaction data. Prior to the main
analysis of the data, we performed multiple pre-processing
steps, including data segmentation and feature extraction,
which are summarized in the remainder of this section.

4.1 Collected Data
For our study 1, we collected observation logs for a total of
51.7 hours of work and an average of 4.3 (±1.3) hours per
participant. For our study 2, we collected self-reports for a
total of 58 workdays and an average of 4.5 (±1.7) days per
person. On average, participants reported a high confidence
with their self-reports (>3) in 20.6 (±9.0), and a medium
or low confidence (≤3) in 22.2 (±16.7) of the pop-ups they
answered. 77.0% was the highest ratio of medium or low
confidence self-reports that one participant had, and 16.7%
was the lowest. We decided to only use the data of the 268
self-reports with a high confidence (>3), thus including a
total of 268 hours of work and discarding the rest (289 self-
reports). This allowed us to ensure we were training our
models with data that is of high quality and accuracy. Future
work could also account for over- or under-confidence in
participants’ self-reports.
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Fig. 2. Screenshot of the second page of the experience sampling pop-up that asked participants to self-report their task types.

TABLE 1
Self-reports for Study 2.

All per Part.
Days participated 58 4.5 (±1.7)
Pop-ups displayed to participants 557 42.8 (±21.6)
Pop-ups answered by participants 268 20.6 (±9.0)
- Pop-ups answered within 5 minutes 158 12.2 (±6.3)
- Pop-ups answered after 5 minutes 110 8.5 (±5.4)
Pop-ups postponed by participants 62 4.8 (±3.5)
Pop-ups discarded by researchers 289 22.2 (±16.7)

Table 1 reports statistics on the self-reports. Since overall,
only 11% of the pop-ups were postponed by participants,
one reason for the relatively high number of self-reports
with medium or low confidence could be that the pop-ups
appeared at inopportune moments and participants did not
remember they could postpone it. Instead, participants might
have just clicked through the pop-up and reported a low
confidence to not distort the data. We discuss possible threats
in Section 7 and improvements in Section 8.

4.2 Time Window Segmentation

To calculate and extract task switch detection features, we
defined the time windows to be between two application
switches, which we call application segments. Thus, the task
switch detection model that we were going to build, could
recognize task switches whenever a developer switches
between applications, but would miss task switches within
an application, such as a switch from a work item to the next
one inside the IDE. We consider application segments to be
an appropriate time window with minimal prediction delay,
since developers spend on average only 1 to 2 minutes in
an application before switching to another [2], [3], [23], and
to ensure the accuracy of participants’ self-reports (in study
2) was high. Threats to this classification are discussed in
Section 8. In contrast, previous approaches predominantly
used longer and fixed window lengths of 5 or 10 minutes [13],
[14], [17], [27]. These shorter and more flexible time windows
at borders of application switches allow to more accurately
capture developers’ behaviors, and to more precisely locate
the point in time of the task switch. For the task type
detection features, we used the time windows between two
task switches, as identified by our observations (study 1)
or participants’ self-reports (study 2), which we call task
segments for the feature extraction.

4.3 Task Switch Features Extracted

A next step towards building a classifier for task switch
detection is to extract meaningful features from the raw
computer interaction data collected by the monitoring tool.
The features that we developed are either based on heuristics
that participants stated as indicative of their task switches
in the post-study questionnaire (study 2), based on features
that have been linked to developers’ task switching behavior
in prior work, as well as based on our own heuristics. The
features we used are presented in Table 2 and are discussed
in more detail in the remainder of this section.

Task switch detection is a special case of change-point
detection [49], [50], which is the process of trying to detect
abrupt changes in time-series data. This is why many of
our features compare the similarity between characteristics
of the previous application segments with the current one,
for example the difference in the number of keystrokes. To
determine how many steps back one needs to compare the
current with the previous application segments’ features, we
run the task switch detection taking into account 1 and up
to 10 steps back into the past, and comparing the resulting
precision and recall. Our analysis of the results indicated that
after an initial increase of the precision for detecting a switch,
the precision and recall gradually drop as the number of
steps increases. We therefore chose 2 as the number of steps
to go back in terms of application segments. As a result, the
total number of features used for the task switch detection
is 84, which is double the number of unique features used:
once calculated for comparing the current with the previous
application segment, and once to compare the previous
two application segments. In the following, we provide an
overview over all the features used:

USER INPUT FEATURES The first feature group are user
input features. They are based on keyboard and mouse
interaction, such as the difference in the number of keystrokes
the participant pressed per second between this and the
previous time window segment.

APPLICATION CATEGORY FEATURES We categorized
commonly used applications into one of 13 predefined
application categories, based on our classification in previous
work [3] and participants’ suggestions of what they consider
to be good indicators for switching to another task. These
include categories specific to software engineering, such as
DeveloperTool, CodeReview or TestingTool, but also more general
ones, such as Read/Write Document, Email and Web Browser.
They are leveraged in 26 features that capture switches to or
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TABLE 2
Features analyzed in our study and their importance for predicting task switches and task types.

Features Import.
Switch

Import.
Type

All

Import.
Type

UI
User Input Features 45.8% 52.0% 81.0%
Keystroke differences (4): difference in the number of navigate/backspace/normal/total keystrokes
pressed per second between the previous and current application/task segment [22], [32], [33], [46]

16.4% 19.1% 29.9%

Mouse click differences (4): difference in the number of left/right/other/total mouse clicks per second
between the previous and current application/task segment [22], [32], [46]

17.9% 13.9% 29.4%

Mouse moved distance (1): total moved distance (in pixels) of the mouse per second [46] 6.8% 8.7% 13.5%
Mouse scrolled distance (1): total scrolled distance (in pixels) of the mouse per second [22], [32] 4.7% 5.0% 8.2%
Application Category Features 29.4% 34.3% NA
Switch to/from specific application category (26): switch to/from a specific application category (e.g.
messaging), while the previous one was different. Application categories considered: CodeReview [PS],
DeveloperTool [3], IDE [3], Idle [PS], [35], IM [PS], [47], Mail [PS], [47], Music [PS], [15], [22], [47],
Navigate, Read/Write Document [3], TestingTool [3], Utility, WebBrowser [PS], [3], Unknown

28.0% NA NA

Same application category (1): the current application category is the same as the one in the previous
application segment, e.g. both are messaging [15], [47]

1.4% NA NA

Time spent per application category (13): the percentage of the total duration of the task segment that
was spent in each of the 13 application categories [14], [32], [33]

NA 34.3% NA

Switching Frequency Features 16.6% 13.7% 19.0%
Difference in the window switches frequency (1): difference of the number of switches between
windows of the same or a different application per second between the current and the previous
application/task segment [14], [27], [32]

7.2% 13.7% 19.0%

Difference in the time spent in an application (1): difference of the total duration spent between the
current and the previous application segment [14]

9.4% NA NA

Lexical Features 8.2% 0% 0%
Code in window title (1): the window titles of the current and previous application/task segments
both contain code, as identified by text that is written in camelCase or snake case. Can also distinguish
between development and other file types

1.4% 0% 0%

Lexical similarity of the window titles and application names (2): cosine similarity based on the term
frequency-inverse document frequency (TF-IDF) between the current and previous application segments’
window titles or application names [14], [27], [48]

6.8% NA NA

References on these features (in blue) are either on previous related work or participants’ suggestions (PS). A feature importance of NA denotes
that the feature was not used for the prediction group. For the task type columns, ‘All’ denotes that all features were considered, ‘UI’ indicates
that only the user interaction features were used, and the application category features were ignored. Numbers in brackets show feature counts.

from a specific application category, such as switching to a
messaging application or becoming idle. Since switching to
another application might be another indication for a task
switch [15], [47], we added one feature that captures these.

SWITCHING FREQUENCY FEATURES In the post-study
questionnaire, participants mentioned that they often navi-
gate through several applications to clean-up their computer
right before starting a new task, which is why we added a
temporal feature based on the window switching frequency.
One feature captures the difference in the time spent in an
application, since this might be another indicator for a task
switch, either because a switch is less likely immediately after
a task switch, and the likelihood of a task switch increases as
time passes [14].

LEXICAL FEATURES Inspired by prior work [14], [27],
[48], we also added three lexical/semantic features that are
extracted from application names and their window titles.
The textual data was first pre-processed to produce lists
of words via tokenization on punctutation and whitespace.
From these lists we also removed common stop words such
as “and”, “the”, and “or”. Since window titles might include
code snippets, such as a class or method name or develop-
ment file type, we added a feature that captures whether
the window title contains text written in camelCase or
underscore_case, and whether this is different to the
previous segment. To determine whether the previous and
current application segments have a contextual similarity,
two features are calculated based on the cosine similarity

of the window titles and application names using the term
frequency-inverse document frequency (TF-IDF). Note that
the application name and window titles were also used to
determine the application category features. In addition, and
unlike some previous work, we explicitly did not capture
file contents to reduce intrusiveness and avoid privacy
concerns [37], [51], [52].

4.4 Task Type Features Extracted
For the task type detection, we reused the same features as in
the task switch detection whenever possible. However, some
features required adaption or made no sense in this context.
First, as the time window for task type detection encom-
passes one or multiple application segments, we replaced
the application category features with a feature that captures
the ratio between the time spent in the specific application
category and the time spent in the task segment. This allowed
us to determine the dominant application category in a task
segment. Second, we eliminated the lexical similarity features
as these are computed based on an application segment’s
similarity to another segment. In the task type detection
scenario, we have no comparable ground truth to use to
calculate such features. This resulted in a total of 25 features
used for the task type detection.

4.5 Outcome Measures
For the task switch detection, we labeled each application
segment either with Switch or NoSwitch, depending on
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whether we observed a task switch (in study 1) or whether
the participant self-reported a task switch (in study 2). While
our model is able to detect task switches on the granularity
of application segments, an actual switch might happen
while using the same application. Thus, our task switch
detection approach is at most the duration of the application
segment away from the actual task switch, which was an
average of 1.6 minutes (±2.2) in our study. For the task type
detection, we labeled each task segment with the observed
or self-reported task type. Descriptive statistics regarding
participants’ task switching behavior and the task types
they worked on can be found in Section 5.1 and Section 6.2,
respectively.

4.6 Machine Learning Approach
We used scikit-learn [53], a widely used machine learn-
ing library for Python, to predict task switches and task
types. We evaluated several classifiers by applying them
to our feature set and testing different hyperparameters. A
RandomForest classifier with 500 estimators outperformed
all other approaches, including a Gradient Boost-Classifier,
Support Vector Machine (SVM), Neural Network and Hidden
Naı̈ve Bayes classifier. Details on the hyperparameters of the
evaluated classifiers can be found in the supplementary ma-
terial [45]. A RandomForest classifier is one form of ensemble
learning that creates multiple decision tree classifiers and
aggregates their predictions using a voting mechanism [54],
[55]. It does not require a pre-selection of features and can
handle a large feature space that also contains correlated
features. Hence, for the remainder of this paper, the presented
results were obtained using a RandomForest classifier. Prior
to classification, we impute missing values by replacing them
with the mean and apply standardization of the features,
which centers the data to 0 and scales the standard deviation
to 1. These common steps in a machine learning pipeline can
improve a classifier’s performance [56]. For the task switch
detection, we further apply Lemaı̂tre’s implementation of
SMOTE, which is a method for oversampling and can
considerably boost a classifier’s performance in the case
of an imbalanced dataset such as ours [57]. For the task type
detection, where as much as 80-90% of the reported types
are of the Development class we instead employ penalized
classification to correct problems caused by class imbalance,
as SMOTE has significant drawbacks when the minority
classes have a limited number of samples [58].

We built both individual and general models, where an
individual model is trained and tested with data solely from
one participant and a general model is trained on data from
all participants except one, and tested on the remaining one.
Individual models often have a higher accuracy since they
are trained on a person’s unique behavioral patterns. On
the other hand, general models are usually less accurate but
have the advantage of solving the cold-start-problem, which
means that no prior training phase is required and the model
can be applied to new users immediately.

To evaluate the individual models, we applied a 10-fold
cross-validation approach, where the model was iteratively
tested on 1/10 of the dataset while being trained on the
remaining data. We adapted the cross-validation approach
to account for the temporal dependency of the samples. In
particular, there is a dependency between samples in close
temporal proximity, since data from the preceding samples

Fig. 3. Cross-validation approach for the individual models, leaving a gap
of 10 samples before and after the test set to account for the dependence
of samples in close temporal proximity.
is incorporated in the features. To ensure a valid and realistic
evaluation of the model [59], we therefore deleted h samples
on either side of the test set block. In our case, we chose h=10
since we included up to 10 preceding samples in the feature
calculation (see Section 4.3). The cross-validation approach is
illustrated in Figure 3.

5 RESULTS: DETECTING TASK SWITCHES

5.1 Descriptive Statistics of the Dataset
Participants switched frequently between tasks, with a mean
task switch rate of 6.0 (±3.7, min: 1.8, max: 18.9) times per
hour. The average time spent on each task was 13.2 (±
7.3, min: 3.1, max: 30.8) minutes 3. Developers’ task switch
behaviors are similar to previous work [2], [23].

5.2 Task Switch Detection Error Distance and Accuracy
To analyze how well our task switch predictions work, we
run a first discrete analysis by calculating the error distance
between each predicted and the actual task switch. The
average error distance is 2.79 (±2.30) application-switches,
meaning that in case a task switch was not detected at the
exact moment, it is on average 2.79 applications before or
after the predicted one. To put this in context, multiplying
the average application segment length of 1.6 (± 2.2) minutes
(Section 4.5) with the error distance results in an average
of only 4.46 minutes that a task switch is predicted before
or after the actual one. Of all task switches that were not
detected at the exact moment, 44.7% of the task switches
our model predicted have an error distance of 1 application-
switch, 15.8% have a distance of 2 application-switches, and
39.5% have a distance of 3 or more application-switches.

Table 3 gives an overview of the task switch detection
performance of individual and general models. We split the
presentation of the data into the two studies, since they were
collected with a different method. As a baseline, we report
the results of a random classifier, where the likelihood of
predicting a certain class is based on the class distribution of
the training set.

Overall, our analysis revealed that we can detect task
switches at their exact location with a high averaged accuracy
of 84% (precision: 62% and recall: 35%, kappa: 0.34) when
trained with individual models. Applying the general model,
we achieved an averaged accuracy of 73% as well as higher
recall of 55% and lower scores in both precision (46%) and
kappa (0.27). Overall, despite these differences we found
the two models were very similar in performance judged

3. We do not report individual results for the two studies, since the
task switch rate (p-value=.056) and time spent on a task (p-value=.215)
are not significantly different in the two datasets.
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TABLE 3
Overview of the performance of detecting task switches, for both individual and general models.

INDIVIDUAL MODELS GENERAL MODEL
Dataset Accuracy AUC F-Score Precision Recall Accurracy AUC F-Score Precision Recall
Study 1: Observations 82% 76% 44% 57% 38% 70% 78% 46% 46% 61%
Study 2: Self-Reports 86% 72% 42% 67% 31% 66% 72% 36% 43% 55%
All 84% 74% 43% 62% 35% 67% 75% 40% 46% 57%
Baseline 55% 49% 24% 18% 42% 51% 50% 25% 18% 48%

by both AUC (74% for individual vs 75% for general) and
F1-score (43% vs 40%). Compared with our baseline classifier,
both the individual and general model show substantial
improvements across the board, with the exception of recall
in the individual model. Note that this does not mean that the
baseline necessarily performed better in this case, only that
our model was more much selective in its predictions, as is
reflected in the higher precision score. For the individual
models, we compared the results of each participant’s
model (see supplementary material [45]). It reveals that the
prediction performance varies quite substantially for each
participant. These results are discussed with respect to their
applicability in real-world scenarios in Section 7.

5.3 Task Switch Feature Evaluation
A Random Forest classifier can deal well with a larger
number of features which makes prior feature dimensionality
reduction of our 84 features obsolete [54], [55]. While we do
not apply a feature selection technique in our approach
since it would only select the most predictive features in
the model, we are still interested in learning if certain
features are generally more important, especially across
different participants. The second column of Table 2 contains
the feature importance as attributed by the RandomForest
classifier using all features and averaged over all participants’
individual models. To calculate the feature importance
metrics, we used the Gini impurity measure from scikit-
learn, which captures the feature’s ability to avoid mis-
classification [53]. The most predictive feature groups are
user input (45.8%) and application category (29.4%). The
feature group with the least predictive power are the lexical
features (8.2%). The supplementary material includes the
feature importances of each individual feature [45].

6 RESULTS: DETECTING TASK TYPES

6.1 Identified Task Type Categories
As described in more detail in Section 3, we inferred task
type categories after collecting task and task switch data
from observing 12 developers at work and performing a
Thematic Analysis. This resulted in nine task type categories
we described in Table 4. In the post-study questionnaires
of study 2, participants reported that they agreed with the
identified task types and generally had no issues to assign
them. However, two participants mentioned that a task type
for Support duties was missing:

“[Support]-Duties. These are very specific tasks that require a lot
of different things to do. It’s not Development and it can be a lot of
ad-hoc and requires many context switches.” - P14

Two participants mentioned that it was sometimes diffi-
cult to know if time spent on emails should be assigned to
Development or Awareness & team:

“I was sometimes unsure of how to classify the time I spent
responding to emails. I generally classified it as development since
most of the emails were development-related.” - P21

Most of our task type categories are consistent with pre-
vious work that investigated knowledge workers’ tasks [32],
[60], [61], [62]. For example, Meetings, Administrative, Planning
and Private were also prevalent in both Kim et al.’s and
Czerwinksi et al.’s work [60], [62]. Kim et al. further divided
project work (in our case Development tasks) into Documenting
and Conceptualizing Ideas, Environment and Development and
Design. We did not make these finer-granular distinctions
since we did not want to make the self-reporting of task
types in the second study too complicated, which would
degrade the quality of self-reports.

6.2 Descriptive Statistics of the Dataset
On average, developers worked on 6.1 (±1.6, min: 3, max:
9) different task types during the studied time periods,
indicating that most of the identified task types are relevant
to all developers. The majority of developers worked on
Development, Awareness & team, Personal and Planning tasks on
a daily basis. Only five developers worked on Administrative
tasks during the study period, indicating that for many
developers this is not a task they spend time on very often.
The task type participants self-reported having spent the
most time on is Development, with an average of 37 (± 12)
minutes spent for every hour of work. Participants also
spent a surprisingly high amount of time, almost 10 minutes
per hour of work, with Personal, including work unrelated
browsing and messaging. Table 4 reports details for all task
types as well as the number of participants who self-reported
having worked on the task type.

We also analyzed if having a higher diversity in work
(i.e. working on more different task types) correlates with
developers switching more between tasks. There is a weak,
not statistically significant positive correlation (Pearson’s
r = 0.32, p = .12), which suggests that there are other, more
important reasons causing developers to switch tasks.

6.3 Task Type Detection Accuracy
Table 4 shows the results of our task type detection approach
across all 9 task type categories. We omit the accuracy metric
in this table, as recall is a measure of individual class accuracy,
and since the recall presented in the all row is weighted
by class size it therefore assumes exactly the same value
as accuracy. As with the task switch detection analysis, we
trained both individual models and one general model which
was trained on all participants. The Administrative task type
was not predicted a single time by the general classifier,
and as thus the precision scores were undefined for this
class. Similarly, the task types Planning and Other had low
precision and recall values, since the sample size used for
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TABLE 4
Overview and descriptions of the task type categories, the average time developers spent on each task type per hour of work, and the performance

of our task type detection approach, for both individual and general models.

INDIVIDUAL MODELS GENERAL MODEL
Avg (Stdev) Sample All Features UI Features All Feat. UI Feat.

Task Type Category mins/h Size Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.
Development: bug-fix, refactoring, code review, imple-
menting new feature, reading/understanding documen-
tation/code, testing, version control, dev.-related learning

37.2 (±12.2) 612 70% 85% 62% 77% 59% 77% 50% 78%

Personal: work unrelated web browsing, private emails or
texts, (bio or lunch) break

9.7 (±7.0) 170 48% 45% 42% 34% 33% 32% 32% 23%

Awareness & team: reading/writing emails, discus-
sions/answering questions in IM

5.3 (±6.0) 234 64% 53% 40% 35% 36% 44% 22% 15%

Administrative: often routine tasks, e.g. reporting work-
time, expenses report, paperwork

4.0 (±3.6) 12 50% 17% 33% 8% NA NA NA NA

Planned Meeting: attending a scheduled meeting/call, e.g.
weekly scrum, weekly planning meeting

3.6 (±2.7) 94 40% 40% 33% 31% 10% 4% 2% 1%

Unplanned Meeting: attending an ad-hoc, informal meet-
ing, usually with one team-member only, e.g. unscheduled
phone call, colleague asking a question

3.1 (±2.8) 90 43% 29% 36% 29% 41% 25% 30% 18%

Planning: in the calendar, task list, work item tracker 3.0 (±3.5) 90 31% 24% 26% 16% 16% 1% 1% 0%
Other: tasks that do not fit into the other categories.
Participants mentioned that these were support-duty, doc-
ument writing (e.g. in PowerPoint, Word) and for product
development/innovation.

2.7 (±3.9) 40 47% 25% 3.7% 2.5% 0% 0% 2% 1%

Study: work related to this study (e.g. talking to observer,
filling out questionnaire)

1.9 (±1.9) 64 67% 58% 49% 41% 78% 69% 29% 20%

All 1406 59% 61% 46% 49% 44% 50% 33% 41%
Baseline 1406 30% 30% 30% 30% 24% 24% 24% 24%
The ’All Features’ columns show results using models trained with all features, while the ’UI Features’ columns show results from models
trained using only user interaction features (i.e. excluding application category features).

training these types was small. In general, the individual
models (precision 59%, recall 61%) outperformed the general
model by a large margin (precision 44%, recall 50%).

One important aspect of our approach that distinguishes
our classifier from previous work (e.g. [15], [22], [47]) is
its ability to make predictions even on previously unseen
applications. To demonstrate this, we split the results into
two categories: with the manual application category map-
pings (All Features) and without (UI Features). The UI Features
include all user interaction features, but exclude application
features. While the combined approach proved to be superior,
user input features still proved to have high predictive power
on their own. Overall, there was a 28.2% increase in precision
when including the application category features, and a 24.5%
increase in recall.

We also found there was a substantial difference in
performance depending on the task type category. The
Development task type proved to be the easiest to predict,
achieving high recall (85%) and precision (70%) scores.
Conversely, the Planning task type saw very poor results,
with only 24% recall and 31% precision. These results are
somewhat in line with what one might expect. Naturally,
some task categories are more difficult to predict than others.
For instance, discerning the nature of a meeting (planned
or unplanned) based purely on a users applications used
and input activity seems to be nearly impossible. As seen
in Figure 4, there is substantial confusion between some
categories, especially between the two meeting categories
(Planned Meeting and Unplanned Meeting) and the Personal
category. These categories tended to have a high amount
of time spent idle, meaning the participant was away from
their computer which naturally makes correct predictions
exceptionally difficult. As a consequence of the dominance
of Development samples in our dataset, our classifier also

Fig. 4. Confusion matrix for task type prediction.

exhibits a strong bias towards predicting the Development
category. While a larger sample size would likely help reduce
this bias, it is of note that the Development category is also
the one participants spent the majority of their time in, 37.2
(±12.2) minutes on average for every hour of work.

6.4 Task Type Feature Evaluation
The third and fourth column of Table 2 show the Gini feature
importances we calculated for our RandomForest classifiers,
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averaged over all participants. When considering All Features,
we found the time spent per application category features to
have by far the greatest importance (39.1%), followed by
keystroke features (17.5%). However, the combined user input
feature group contributed more than any other feature group
(47.6%). The lexical features did not contribute at all to the
results of the classifier, which suggests there is room for
improvement in this area as window titles can contain a
substantial amount of hints that could help to identify a
specific task. The supplementary material includes individual
task type feature importances.

7 DISCUSSION

In this section, we discuss implications of our results, possible
improvements to automated task switch and type detection,
and practical applications of automated task detection in
real-world scenarios.

7.1 Improving Task Switch Detection
We found that for the task switch detection, the individual
models perform quite similarly to the general model overall,
even though the prediction performance varies quite sub-
stantially for each participant. This suggests that using the
general classifier is accurate enough to solve the cold-start
problem. For practical, real-world applications, we therefore
suggest using a general model as a default, and then allowing
the user to improve the classifier by training it. As we found
in study 2, collecting periodic self-reports over just a few
days is feasible in real-world scenarios and may even lead to
some insights about work itself.

More research is required to explore reasons for and
better balance the individual differences in developers’ task
switching behaviors. This includes investigating the charac-
teristics of inaccurately classified task switches and consider
additional data sources. For example, we could imagine to
include information about a developer’s personality and
company culture to train a classifier that works well for
developers with similar work habits, instead of building a
general one for everyone. Future work could also study the
predictive power of features extracted from additional data
sources, such as emails, calendars, biometrics (e.g. detecting
when a user is away from the computer), and more detailed
development related data (e.g. activities inside the IDE).

The relatively low feature importances of our lexical
features shows further potential to more effectively leverage
contextual information. Besides calculating lexical similarity
based on cosine similarity (TF-IDF) of window titles, we
also experimented with variations, such as an unweighted
term frequency metric and two different word embedding
models including one trained on Wikipedia, and one trained
on StackOverflow which has been shown to produce embed-
dings that are more closely related to the domain of software
engineering [63]. They led to even less predictive features,
which is why we did not report them separately. One reason
could be the little overlap in the window title data. Window
titles generally capture only the application name and the
name of the current file, document, email or website, which
limits overlaps with other window titles. Including the actual
contents of these resources could be one way to overcome
these limitations, but could result in privacy concerns, as
discussed in more detail in the next section.

7.2 Improving Task Type Detection

For the task type predictions we found that the individual
models outperform the general model, with an overall accu-
racy of 61% compared to 50%. Even though we collected
data from a rather large sample of 25 participants (compared
to similar work), we were not yet able to build highly
reliable general models, which could solve the cold-start
problem. The difficulty to discover common patterns across
all participants emphasizes how individual and diverse
developers’ tasks are.

We see our work as a first step towards better under-
standing and automatically characterizing developers’ task
context. With our models’ ability to automatically detect
task switches based on data collected through our computer
interaction monitoring, a next step could be to collect a more
in-depth set of data in-between two task switches, and from
more participants over a longer period of time. For example,
IDE extensions (e.g. Feedbag [64] or WatchDog [65]) could
be leveraged to identify the code files, code reviews, and
projects the developer has been working on, browser trackers
(e.g. RescueTime [66]) could identify and classify the websites
a developer visited, and integrations into the email or IM
client could help to understand which people a developer
communicated with. To better manage these large amounts
of data, research will need to come up with approaches to
model and summarize task context—and task types are a
first step into doing that. We have been able to find only
very little work on automatically detecting, characterizing and
summarizing (developers’) tasks yet [22], [32], [33].

While more fine-grained lexical data, such as the file or
website contents (as applied in [37], [51], [52]) or participants’
actual keyboard input, could be leveraged to improve our
models, it also might reveal details about the company’s
products or the developers’ work and personal life that they
are not comfortable sharing with us. To minimize privacy
concerns, we had to find a trade-off between intrusiveness,
by capturing only a minimum set of data, and completeness,
by monitoring as much as possible to get enough data that
allowed us to predict task switches and types in the field. To
earn participants’ trust with capturing potentially sensitive
data, we were also very transparent with what data we collect
and how it will be used, allowed participants to review it
before sharing it with us, and making it possible to pause the
monitoring application at any time that seemed particularly
sensitive to them.

7.3 Reducing the Prediction Delay

Ideally, a task switch and type detection would be very
close to real-time, i.e. close to the exact time a switch occurs.
With our approach, there can be a prediction delay of a
maximum of one unique application segment, on average 1.6
minutes (±2.2), when predicting a task switch. This delay is
considerably smaller compared to previous approaches that
applied fixed window lengths of (usually) 5 minutes (e.g. [13],
[14], [17], [27], [32], [33]). Nonetheless, future work could
further reduce the prediction delay by further shortening
the smallest possible segment size, in our case application
switches. This would allow to also identify switches within
an application, such as when a developer is switching tasks
inside the web browser or IDE.
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7.4 Applications for Automated Task Detection

An active area of research aims to better support developers’
frequent task switching, for example by supporting resuming
interrupted tasks or by easing task switching (see Section 2.3).
So far, most approaches are limited to developers’ manual
identification of task switches, and their evaluations have
pointed out challenges this poses for them. Our approach
demonstrates the feasibility of automatically detecting task
switches and types in the field, based on a few hours of
training data, which makes it possible to increase the value of
previous approaches significantly and stimulate new research
and tool support. Notably, tool support would greatly benefit
from the improvements we discussed in the sections above.
In the post-study questionnaire of study 2, participants
described concrete applications that we qualitatively an-
alyzed and related to prior work, which resulted in the
following three main opportunities for applying automated
task detection:

One application of an almost real-time detection of task
switches that 8 (out of 13) participants described is to
actively reduce task switching. This includes automatically
blocking notifications from email, instant messaging or social
networks when a developer is focused on a (challenging)
task, to allow extended times of deep focus:

“What if Windows has a built-in and personalized model about
when to give you notifications. I feel like there is a good middle
ground between forcing the user to turn off notifications from the
OS and having too many notifications interrupting the user.” -
P25

Reducing task switching at times of high focus could
greatly reduce multi-tasking, a major source of stress and
quality issues [2], [67], [68], [69]. Similarly, an automated task
switch detection could improve interruptibility classifiers
and postpone in-person interruptions from co-workers to
task switch borders, times they are less costly [70], [71], [72].

Another application of automated task detection could
be to support the resumption of suspended or interrupted
tasks. Participants did not suggest this application them-
selves, but 8 (out of 13) rated it as ’useful’ or ’very useful’ in
a follow-up question of the final questionnaire. According to
Parnin and Rugaber, a major challenge of task resumption
is to rebuild the interrupted task’s context [73]. Applying
similar summarization approaches as seen in other areas of
software development [74], [75] could be presented to the
user as cues upon returning to the suspended task, which has
been shown to considerably reduce the resumption lag [4],
[76], [77]. While previous approaches, such as TaskTracer [7],
Scalable Fabric [78], GroupBar [9] and Mylyn [6], allow the
capturing and presentation of task context, they require the
user to manually group related artifacts or manually state
the start and end of a task, thus, reducing chances of long-
term adoption. Even tough there is room for improvement
as discussed above, our approach can serve as a starting
point to automate these approaches, since it can already be
beneficial to receive help with resuming some tasks, as long
as they are detected correctly.

A third opportunity of application that 10 (out of 13)
participants suggested is to use automated task detection to
increase their awareness about task work and time spent
on tasks, which could help to identify opportunities for work
habit and productivity improvements. This is in line with
a survey with 379 developers that showed the most-often

mentioned measurement of interest when reflecting about
productivity are the tasks developers made progress on and
completed in a workday [23]. An aggregated visualization
of the automatically inferred tasks could give developers
insights such as how much time they spend on different
tasks, when they worked on planned versus unplanned
tasks, or their multi-tasking behaviors:

“It can help point out different working styles that are also effective
and efficient. Not everyone works in the same way.” - P24

Recently, researchers started building retrospective dash-
boards for developers [42], [65], [79], [80] and other knowl-
edge workers [66], [81], [82], usually by visualizing data
on the level of applications or application categories, but
suggesting that a per-task level would be more beneficial. An
increased awareness about one’s task switching behavior
could support developers to identify goals that help to
maintain and improve good work habits, such as reducing
multi-tasking or actively blocking notifications from dis-
tracting services and websites at times they need to focus.
Participants further suggested that the data could help to
reduce administrative workloads that require them to report
time spent at work:

“We’re often asked to report at the end of the month how much
time we spent on support requests (...) versus development work.
That kind of info is tedious to track manually, but a tool could
generate an automatic report as needed, allowing for more accurate
counts.” - P22

Lu et al. recently showed that the lack of logs of activities
and tasks is often a hindrance to be able to transfer them into
time reports [83]. While a few time-tracking tools already
exist (e.g. DeskTime [84], TimeDoctor [85]), they all require
users to manually specify the start and end of a task.

8 THREATS TO VALIDITY

OBSERVING DEVELOPERS IN STUDY 1 The internal validity
of our results might be threatened by the presence of the ob-
servers during the observation sessions, causing developers
to diverge from their regular work habits, e.g. having less
breaks than usual. Observing participants on a single day
only might not be representative of the participant’s regular
workday. We tried to mitigate these risks by not interacting
with participants during the observations, splitting up the
session into two two-hour blocks, sitting as far away from
the participant as possible, telling co-workers beforehand
that they could still communicate and interrupt as usual, and
by allowing the participant to pick an optimal timeslot that is
representative of their usual work. Our observational study
has the advantage that, rather than performing a lab study
or experimental exercise, participants were observed during
their real-world work, thus increasing generalizability and
realism. However, the above mentioned risks of observing
developers at their workplace make it very difficult to scale
observational studies and observe them over many days.
Hence, we did not rely only on observations, but also
on participants’ self-reports and with that, combining two
methods and strengthening our overall approach.

SELF-REPORTING IN STUDY 2 While collecting partici-
pants’ task data using self-reports has proven to be a valuable
approach to scale the collection of labeled data for supervised
learning, there are a few limitations. First, we rely on the
accuracy of participants’ self-reports. For example, they
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might not always have been able to accurately remember
their tasks, or filling out the pop-up regularly might be
perceived as cumbersome after a while. In Section 3.2,
we describe our actions to minimize these risks in detail,
including the ability to postpone a pop-up and collecting
confidence ratings. Aiming to make the self-reporting as easy
as possible required limiting the self-reports to segments
with the granularity of an application switch and excluding
application switches shorter than 10 seconds. This is why
our models are unable to detect task switches within an
application, as well as very short ones. Since developers
switch between applications very frequently, on average
every 1.6 minutes (±2.2), our model is able to predict
a task switch within the same time frame. Future work
could investigate how to give participants good-enough cues
that allow them to accurately self-report switches within
applications (e.g. switching from a news website to the work
item tracker in the browser) without making the interface
too cluttered. Finally, the reliance on collecting computer
interaction data only, instead of also including other sensors
such as heart-rate monitors or cameras, limits our knowledge
of what is happening when there is no input to the computer,
e.g. in the case of idle times from using the smartphone,
reading a document without scrolling, or a discussion with a
co-worker.

SAMPLE SIZE A further threat to the external validity of
our results could be the number of participants. A higher
number of participants might have led to a more robust
general model to predict task switches and task types.
Nonetheless, collecting task data from 25 participants is
considerably higher than what was reported in previous
work (between 1 and 11 participants). We tried to mitigate
this threat by selecting participants from four different
software companies in various locations.

TASK DEFINITIONS The construct validity of our results
might be threatened by our definitions of a task (switch) and
our open coding approach to identify task type categories.
To minimize this risk, we based our definitions of task,
task switch and task type on previous work, and asked
participants about their own definitions in both studies
(Section 3).

9 CONCLUSION

In this paper, we explored the potential of automatically
detecting task switches and task types based on developers’
computer interaction data. Running two field studies that we
conducted with a total of 25 professional software developers,
we found that we are able to detect task switches and task
types with high accuracy in the field and within a short time
frame (average 1.6 minutes) from the actual task switch. We
thereby examined a broad range of semantic and temporal
features extracted from the computer interaction data and
found that features based on user input data hold the highest
predictive power.

Our work extends previous work with an approach that
uses a broader range of temporal and semantic features,
by developing new features, and by not being limited to
capturing task switches and types within the IDE only.
The evaluation of our approach in a field-study with 25
professional developers, compared to 1 to 11 participants in
previous work, revealed higher accuracy and less delay in the
predictions than comparable prior work. The strong evidence

on the potential to automatically predict task switches in the
field opens up a wide range of applications in real-world
work settings, ranging from complementing existing manual
task support, such as Mylyn [6], to automating time tracking
tools, all the way to new tool support to leverage developers’
workflows.
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