
Zurich Open Repository and
Archive
University of Zurich
Main Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2019

Fostering Software Developer Productivity through Awareness Increase and
Goal-Setting

Meyer, André <javascript:contributorCitation(’Meyer, André’);>

Abstract: Software development organizations strive to enhance the productivity of their developers. All
too often, efforts aimed at improving developer productivity are undertaken without knowledge about
how developers spend their time at work and how it influences their own productivity. In our research, we
focus on two aspects for improving developers’ productivity: better understanding developer productivity
and using these findings to foster productivity at work. To better understand developer productivity, we
took a bottom-up approach by investigating developers’ perceptions of productivity in the field, and by
examining the individual differences in each developer’s work. We found that developers spend their time
on a wide variety of activities and tasks that they regularly switch between, resulting in highly fragmented
work. Extending our understanding of developers’ work and the factors that impact their productivity
then allowed us to develop models of developers’ work and productivity, and build approaches that
support developers with productive behavior changes. To support the identification of self-improvement
opportunities that motivate productive behavior changes, we studied how we can increase developers’
awareness about work and productivity by combining our models with three persuasive strategies: self-
monitoring, self-reflection, and an external indicator. Based on successful applications in the health and
physical activity domain and from examining developers’ expectations, we developed PersonalAnalytics, a
workplace self-monitoring tool that collects a broad variety of computer interaction data and summarizes
the data in a daily and weekly retrospection. A multi-week field-study showed that PersonalAnalytics
offered meaningful insights to 82% of the participants, but the insights were not actionable enough to
motivate behavior change for 41% of our participants. In a follow-up study, we found that continuous
and purposeful self-reflection can motivate productive self-improvements in the workplace, since 83% of
our participants stated that it supported the identification of goals and actionable strategies, and 80%
reported productivity increasing behavior changes. We further studied how we can increase developers’
awareness about their co-workers’ availability for interruptions, by sensing and externally indicating
interruptibility to developers based on their computer interaction. Our large-scale field study with the
FlowLight showed that we can effectively reduce 46% of external interruptions, participants felt more
productive, and 86% of them remained active users even after the two-month study period ended. Overall,
our research showed that we can successfully foster productivity at developers’ work, by increasing their
awareness about productive and unproductive work habits, and by encouraging work habit improvements
based on the gained insights. In addition, our research can be extended and opens new opportunities to
foster productive work for development teams.

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-174312
Dissertation
Published Version

https://doi.org/10.5167/uzh-174312

Originally published at:
Meyer, André. Fostering Software Developer Productivity through Awareness Increase and Goal-Setting.
2019, University of Zurich, Faculty of Economics.

2

Department of Informatics

Fostering Software Developer Productivity

through Awareness Increase and Goal-Setting

Dissertation submitted to the Faculty of Business,

Economics and Informatics

of the University of Zurich

to obtain the degree of

Doktor der Wissenschaften, Dr. sc.

(corresponds to Doctor of Science, PhD)

presented by

André N. Meyer

from Blumenstein, BE, Switzerland

approved in July 2019

at the request of

Prof. Thomas Fritz, Ph.D.

Prof. Margaret-Anne Storey, Ph.D.

Prof. Harald Gall, Ph.D.

The Faculty of Business, Economics and Informatics of the University of Zurich

hereby authorizes the printing of this dissertation, without indicating an opinion of

the views expressed in the work.

Zurich, July 17, 2019

Chairman of the Doctoral Board: Prof. Thomas Fritz, Ph.D.

Acknowledgments

First and foremost, I would like to thank my great advisor and mentor Thomas
Fritz, who supported me throughout my studies and gifted me with the op-
portunity to pursue my doctoral studies. I very much appreciate the many
opportunities he provided me with, to work on amazing research projects, his
introductions to researchers that opened the door for some fantastic years-long
collaborations, and him constantly motivating (and challenging) me to push
myself further, to consider new perspectives and to find simpler solutions to
complicated things. Although we were not always living and working on the
same continent, he always found the time to offer precious advice, feedback and
support.

I also want to thank Tom Zimmermann for inviting me several times to
work with him at Microsoft, everything he taught me, and all the fun times
we had besides doing research, be it by exploring new burger places or at the
movies. I thank Gail Murphy for her precious advice and support during my
PhD, helping me with participant recruitment, and always making time for a
discussion regardless of her full calendar. I thank Peggy Storey for spending her
valuable time to examine my thesis and giving precious feedback, for serving on
my PhD committee, and for all the valuable discussions we had throughout my
PhD. I thank Harald Gall for giving me the opportunity to be part of the SEAL
group, serving on my PhD committee, and the interesting discussions we had.

During the time of my PhD, I had the great pleasure to collaborate with re-
searchers from academia and industry, including Christian Bird, Nachi Nagappan,
Andy Begel, Rob DeLine, Mary Czerwinski, Daniel McDuff and Spencer Buja

ii

from Microsoft; David Shepherd, Boyang Li, Vinay Augustine, Patrick Francis,
Nicholas Kraft and Will Snipes from ABB Corporate Research; Earl Barr from
the University College London; Reid Holmes, Nick Bradley, Chris Satterfield, Jan
Pilzer from the University of British Columbia; and Chat Wacharamonatham,
Alberto Bacchelli, Elaine Huang, Manuela Züger, Sebastian Müller, Katja Kevic,
Helen Ai He, Christian Remy and Chia-Kai Yuang from the University of Zurich.
I thank them for the interesting projects, valuable discussions, and everything
they taught me.

My research would not have been possible without the almost 7’000 study
participants and their employers. Thank you for your trust, interest and taking
the time to participate in our studies.

Special thanks go to the current and past members of the Software Evolution
and Architecture Lab, who made the time of my PhD fun and memorable: Carol
Alexandru, Jürgen Cito, Adelina Ciurumelea, Giovanni Grano, Katja Kevic,
Christoph Laaber, Philipp Leitner, Sebastian Müller, Sebastiano Panichella,
Sebastian Proksch, Gerald Schermann, and Carmine Vassallo. Thank you for
your support and valuable feedback on my work, being my guinea pigs for study
test-runs, for the restorative Exploding Kittens game-breaks, and the fun times
we had at the office, at conferences and retreats. I also thank our university’s
administration and technicians for always helping us when we need support.

Last but not least, I thank my fiancée, Larissa, for her boundless and uncon-
ditional support and encouragement, her understanding when I was abroad to
run studies or attend conferences or worked late or on weekends, and joining me
on many of my research stays. I thank my family, Dida, Peter and Stephanie
for laying a fantastic foundation to work systematically and successfully, always
believing in me, and supporting my drive to constantly learn more and grow. Fi-
nally, I want to thank Yves, Daniel and Philipp for their precious friendship, their
kind support and providing me with positive energy and motivation throughout
my PhD.

Abstract

Software development organizations strive to enhance the productivity of their
developers. All too often, efforts aimed at improving developer productivity are
undertaken without knowledge about how developers spend their time at work
and how it influences their own productivity. In our research, we focus on two
aspects for improving developers’ productivity: better understanding developer
productivity and using these findings to foster productivity at work.

To better understand developer productivity, we took a bottom-up approach
by investigating developers’ perceptions of productivity in the field, and by
examining the individual differences in each developer’s work. We found that
developers spend their time on a wide variety of activities and tasks that they
regularly switch between, resulting in highly fragmented work. Our findings
further showed that while productivity is very personal, there are observable
patterns across developers’ productivity perceptions.

Extending our understanding of developers’ work and the factors that impact
their productivity then allowed us to develop models of developers’ work and
productivity, and build approaches that support developers with productive
behavior changes. To support the identification of self-improvement opportunities
that motivate productive behavior changes, we studied how we can increase
developers’ awareness about work and productivity by combining our models
with three persuasive strategies: self-monitoring, self-reflection, and an external
indicator. In several areas of life, especially the health and physical activity
domains, studies have demonstrated that self-monitoring and self-reflection can
increase a user’s awareness, and can motivate positive behavior change.

iv

In our work, we investigated how we can map the success of these approaches
to software developers’ work, by examining their expectations of and experience
with self-monitoring tools in the workplace. We implemented the findings as
a technology probe into PersonalAnalytics, a workplace self-monitoring tool
that collects a broad variety of computer interaction data and summarizes the
data in a daily and weekly retrospection. A multi-week field-study showed that
PersonalAnalytics offered meaningful insights to 82% of the participants, but
the insights were not actionable enough to motivate behavior change for 41% of
our participants. In a follow-up study, we found that continuous and purposeful
self-reflection can be an important step towards productive self-improvements
in the workplace, since 83% of our participants stated that it supported the
identification of goals and actionable strategies, and 80% reported productivity
increasing behavior changes. We further studied how we can increase developers’
awareness about their co-workers’ availability for interruptions, by sensing and
externally indicating interruptibility to developers based on their computer
interaction. Our large-scale field study with the FlowLight showed that we can
effectively reduce 46% of external interruptions, participants felt more productive,
and 86% of them remained active users even after the two-month study period
ended.

Overall, our research showed that we can successfully foster productivity at
developers’ work, by increasing their awareness about productive and unpro-
ductive work habits, and by encouraging work habit improvements based on
the gained insights. In addition, our research can be extended and opens new
opportunities to foster productive work for development teams. For example, we
could aim to gain a better understanding of the interplay between individual
and team productivity, to coordinate team collaboration better and improve the
scheduling of meetings to be less intrusive.

Zusammenfassung

Softwareentwicklungsunternehmen sind bestrebt, die Produktivität ihrer Soft-
wareentwickler zu steigern. Allerdings werden oft Bemühungen zur Verbesse-
rung der Entwicklerproduktivität unternommen, ohne zu wissen, wie Entwickler
ihre Arbeitszeit organisieren und nutzen, und wie ihre eigene Produktivität
dadurch beeinflusst wird. Unsere Forschung konzentriert sich auf zwei Aspekte
zur Verbesserung der Produktivität von Entwicklern: ein besseres Verständnis
der Entwicklerproduktivität und die Nutzung der Erkenntnisse zur Verbesserung
der Produktivität am Arbeitsplatz.

Um Einflussfaktoren auf die Entwicklerproduktivität besser zu verstehen,
haben wir Produktivität aus der Entwicklerperspektive untersucht. Dafür haben
wir die eigene Produktivitätswahrnehmung und individuelle Unterschiede in der
Arbeit von Entwicklern untersucht. Unsere Resultate zeigten, dass Entwickler ihre
Arbeit mit einer Vielzahl von Aktivitäten und Aufgaben verbringen und regel-
mässig zwischen ihnen wechseln, was ihre Arbeit in kleine Fragmente aufsplittet.
Unsere Ergebnisse zeigten ferner, dass Produktivität zwar sehr individuell ist, es
aber beobachtbare Muster in der Produktivitätswahrnehmung von Entwicklern
gibt.

Ein besseres Verständnis über die Entwicklerarbeit und die Faktoren, welche
Produktivität beeinflussen, erlaubte es uns daraufhin, Modelle zu der Arbeit
und Produktivität von Entwicklern zu bauen, um sie bei produktiven Verhal-
tensänderungen zu unterstützen. Um die Identifizierung der Möglichkeiten von
produktiven Verhaltensänderungen zu verbessern, haben wir untersucht, wie
wir die Wahrnehmung von Entwicklern zu ihrer eigenen Arbeit und Produk-

vi

tivität erhöhen können. Dafür haben wir unsere Modelle mit drei Persuasi-
ve Strategies kombiniert: Selbstüberwachung (Self-Monitoring), Selbstreflektion
(Self-Reflection), und einem externen Indikator. Studien in verschiedenen Lebens-
bereichen, insbesondere im Gesundheitswesen und im Sport, haben gezeigt, dass
Selbstbeobachtung und Selbstreflexion die Wahrnehmung eines Nutzers in diesen
Bereichen erhöhen und positive Verhaltensänderungen motivieren und auslösen
können.

In unserer Arbeit haben wir untersucht, wie wir diese erfolgreichen Ansätze
auf die Arbeit von Softwareentwicklern übertragen können. Hierfür haben wir
sie zu ihren Erwartungen an und Erfahrungen mit bestehenden Selbstbeobach-
tungssystemen am Arbeitsplatz befragt. Die daraus resultierenden Erkenntnisse
haben wir als Technologiestudie in PersonalAnalytics integriert, einem System
zur Selbstbeobachtung am Arbeitsplatz. PersonalAnalytics sammelt eine Vielzahl
von Daten zur Interaktion mit dem Computer und fasst die Daten in einer tägli-
chen und wöchentlichen Retrospektive zusammen. Eine mehrwöchige Feldstudie
hat gezeigt, dass PersonalAnalytics für 82% der Teilnehmer wertvolle Einblicke
in die eigene Arbeit und Produktivität bietet. Allerdings waren diese Einblicke
für 41% der Teilnehmer nicht konkret genug, um daraus Verhaltensänderun-
gen zu motivieren. Eine Folgestudie hat gezeigt, dass eine kontinuierliche und
zielgerichtete Selbstreflektion ein wichtiger Schritt zu produktiven Verhaltens-
änderungen am Arbeitsplatz sein kann: 83% unserer Teilnehmer haben mit der
zielgerichteten Selbstreflektion Ziele und konkrete Strategien zur Selbstverbes-
serung identifiziert. 80% der Teilnehmer konnten diese daraufhin erfolgreich in
produktivitätssteigernde Verhaltensänderungen umsetzen.

Schlussendlich haben wir untersucht, wie wir die Wahrnehmung von Entwick-
lern über die Kosten von Unterbrechungen bei Arbeitskollegen erhöhen können.
Dazu haben wir die Unterbrechbarkeit von Entwicklern basierend auf ihren Com-
puterinteraktionen gemessen und mit einem externen Indikatoren angezeigt. Eine
grosse Feldstudie mit FlowLight hat gezeigt, dass die Anzahl der persönlichen
Unterbrechungen nach der Einführung von FlowLight um 46% gesunken ist.
Ausserdem fühlten sich die Teilnehmer produktiver. 86% der Teilnehmer nutzten
FlowLight auch nach Ablauf der zweimonatigen Studienzeit weiterhin aktiv.

vii

Zusammenfassend zeigten unsere Erkenntnisse, dass sich die Produktivität
von Softwareentwicklern erfolgreich steigern lässt, indem man ihr Bewusstsein für
produktive und unproduktive Arbeitsgewohnheiten erhöht und sie ermutigt, ihre
eigenen Arbeitsgewohnheiten basierend auf den gewonnenen Erkenntnissen zu
verbessern. Darüber hinaus zeigen wir auf, wie unsere Forschung erweitert werden
kann, und welche neuen Möglichkeiten sich eröffnen, um die Produktivität von
Entwicklerteams zu erhöhen. Beispielsweise könnten wir ein besseres Verständnis
über das Zusammenspiel von individueller Produktivität und Team-Produktivität
anstreben, das zu einer verbesserten Koordination von Teamarbeit oder der
Planung von Meetings während weniger störenden Zeiten beiträgt.

Contents

1 Synopsis 3
1.1 Research Questions . 6
1.2 Research Approach and Main Findings 9

1.2.1 RQ1: Examining Developer Work and Productivity 11
1.2.2 RQ2: Increasing Self-Awareness to Foster Productivity . 15
1.2.3 RQ3: Increasing External Awareness to Foster Productivity 18

1.3 Threats to Validity . 20
1.4 Challenges & Limitations . 23
1.5 Opportunities for Future Work 26
1.6 Related Work . 30

1.6.1 Software Developer Workdays and Work Habits 30
1.6.2 Fragmentation of Development Work 31
1.6.3 Software Developer Productivity 32
1.6.4 Characteristics and Habits of Successful Developers . . . 33
1.6.5 Fostering Behavior Change with Goal-Setting 34
1.6.6 Self-Monitoring in the Workplace 35
1.6.7 Self-Reflection in the Workplace 36
1.6.8 External Indicators in the Workplace 38

1.7 Summary of Contributions . 39
1.8 Thesis Roadmap . 40

x Contents

2 The Work Life of Developers:
Activities, Switches and Perceived Productivity 43
2.1 Introduction . 44
2.2 Related Work . 48
2.3 Study Method . 48

2.3.1 Participants . 48
2.3.2 Procedure and Monitoring Application 49

2.4 Data Collection and Analysis 53
2.4.1 User Input Data . 54
2.4.2 Preparing Program Data and Mapping to Activities . . . 55

2.5 Results . 56
2.5.1 What Does a Developer Do? 56
2.5.2 How Fragmented is the Work? 62
2.5.3 Perceived Productivity Changes? 64
2.5.4 What are Productive Activities? 65
2.5.5 Summary of Results . 68

2.6 Threats to Validity . 69
2.6.1 Construct Validity . 69
2.6.2 Internal Validity . 70
2.6.3 External Validity . 71

2.7 Discussion . 72
2.7.1 Individuality of Productivity 72
2.7.2 Supporting Flow and Retrospection 73
2.7.3 Scheduling a Productive Work Day 74
2.7.4 Predicting High & Low Productivity 74
2.7.5 Privacy Concerns . 76

2.8 Summary . 77
2.9 Acknowledgments . 78

3 Characterizing Software Developers by Perceptions of Produc-
tivity 79
3.1 Introduction . 80

Contents xi

3.2 Related Work . 81
3.3 Methodology . 81

3.3.1 Data Collection . 81
3.3.2 Data Analysis . 83

3.4 Results . 84
3.5 Discussion . 89
3.6 Threats to Validity . 90
3.7 Conclusion . 91
3.8 Acknowledgements . 91

4 Today was a Good Day: The Daily Life of Software Developers 93
4.1 Introduction . 94
4.2 Research Questions . 97
4.3 Related Work . 98

4.3.1 Influence of Job Satisfaction on Developers’ Workdays . 98
4.4 Study Design . 99

4.4.1 Survey Development Using Preliminary Interviews 100
4.4.2 Final Survey Design and Participants 100
4.4.3 The Validity of Self-Reported Data 103

4.5 Conceptual Frameworks . 104
4.5.1 Developers’ Good Workdays 104
4.5.2 Developers’ Typical Workdays 110
4.5.3 Interrelationship Between Good and Typical Days 116

4.6 Quantitative Analysis . 117
4.6.1 Correlation Between Typical and Good Workdays 119
4.6.2 Time Spent on Activities at Work 119
4.6.3 Workday Types . 121
4.6.4 Collaboration . 124

4.7 Making Good Days Typical . 127
4.7.1 Optimizing Developer Workdays 128
4.7.2 Agency: Manage Competition for Attention & Time . . . 130
4.7.3 Evaluation of Contributions at Work 131

xii Contents

4.8 Threats to Validity . 132
4.8.1 External Validity . 132
4.8.2 Construct Validity . 133
4.8.3 Internal Validity . 133

4.9 Conclusion . 135
4.10 Acknowledgements . 136

5 Detecting Developers’ Task Switches and Types 137
5.1 Introduction . 138
5.2 Related Work . 141

5.2.1 Task Switch Detection . 141
5.2.2 Task Type Detection . 143
5.2.3 Task Support . 144

5.3 Study Design . 145
5.3.1 Study 1 – Observations 146
5.3.2 Study 2 – Self-Reports 148

5.4 Data and Analysis . 152
5.4.1 Collected Data . 152
5.4.2 Time Window Segmentation 152
5.4.3 Task Switch Features Extracted 153
5.4.4 Task Type Features Extracted 156
5.4.5 Outcome Measures . 157
5.4.6 Machine Learning Approach 157

5.5 Results: Detecting Task Switches 158
5.5.1 Task Switch Detection Accuracy 158
5.5.2 Task Switch Feature Evaluation 159
5.5.3 Descriptive Statistics of the Dataset 160

5.6 Results: Detecting Task Types 160
5.6.1 Identified Task Type Categories 160
5.6.2 Task Type Detection Accuracy 161
5.6.3 Task Type Feature Evaluation 163
5.6.4 Descriptive Statistics of the Dataset 164

Contents xiii

5.7 Discussion . 164
5.7.1 Improving Task Switch and Type Detection 164
5.7.2 Applications for Automated Task Detection 165

5.8 Threats to Validity . 168
5.9 Conclusion . 170
5.10 Acknowledgements . 170

6 Design Recommendations for Self-Monitoring in the Workplace:
Studies in Software Development 171
6.1 Introduction . 172
6.2 Related Work . 176

6.2.1 Designing and Evaluating Self-Monitoring Tools for Work 176
6.3 Phase 1 Method: Identifying Design Elements 179

6.3.1 Pilots . 180
6.3.2 Initial Survey . 181

6.4 Phase 1 Results: Identified Design Elements 182
6.4.1 A: Supporting Various Individual Needs 183
6.4.2 B: Active User Engagement 185
6.4.3 C: Enabling More Multi-Faceted Insights 186

6.5 Phase 2 Method: Evaluating Design Elements 189
6.5.1 Participants . 189
6.5.2 Procedure . 190
6.5.3 Data Collection and Analysis 191

6.6 Phase 2 Results: Design Recommendations Based on Evaluating
Design Elements . 192
6.6.1 Different Granularity of Visualizations 192
6.6.2 Interest in Diverse Set of Measurements 193
6.6.3 Increasing Self-Awareness with Experience Sampling . . . 194
6.6.4 Increasing Self-Awareness with a Retrospection 195
6.6.5 Personalized Insights . 198
6.6.6 Potential Impact on Behavior at Work 199

6.7 Discussion . 201

xiv Contents

6.7.1 Design for Personalization 201
6.7.2 Increased Engagement through Experience Sampling . . 202
6.7.3 Actionability for Behavior Change 203
6.7.4 Benchmarking . 204
6.7.5 Team-Awareness . 205

6.8 Generalizability and Limitations 206
6.9 Conclusion . 207
6.10 Acknowledgements . 208

7 Enabling Good Work Habits in Software Developers
through Reflective Goal-Setting 209
7.1 Introduction . 210
7.2 Related Work and Background 213
7.3 Study Design . 213
7.4 Developers’ Work Habit Goals and Strategies (RQ1, RQ2) . . . 218

7.4.1 Improve time management (G1) 219
7.4.2 Avoid (self-induced/external) deviation from planned work

(G2) . 220
7.4.3 Improve impact on the team (G3) 222
7.4.4 Maintain work-life balance (G4) 224
7.4.5 Learn (G5) . 225

7.5 Potential Impact of Reflective Goal-Setting (RQ3) 227
7.5.1 Self-Reflections can Help to Identify Concrete Goals and

Actionable Strategies . 227
7.5.2 Self-Reflection can Increase Awareness on Goal Achieve-

ment and Productive Habits 229
7.5.3 Reflective Goal-Setting can Increase Productivity and Well-

Being . 229
7.5.4 Help Developers to Help Themselves 230

7.6 Summary of Results . 232
7.7 Discussion . 232
7.8 Threats to Validity . 237

Contents xv

7.9 Conclusion . 239
7.10 Acknowledgements . 239

8 Reducing Interruptions at Work:
A Large-Scale Field Study of FlowLight 241
8.1 Introduction . 242
8.2 Related Work . 244

8.2.1 Measuring Interruptibility 244
8.3 Approach and Implementation 246
8.4 Evaluation . 249

8.4.1 Study Procedure . 249
8.4.2 Participants . 251
8.4.3 Data Collection and Analysis 252

8.5 Results . 254
8.5.1 Reduced Cost of Interruptions 254
8.5.2 Increased Awareness of Interruption Cost 256
8.5.3 Feeling of Increased Productivity and Self-Motivation . . . 257
8.5.4 Costs of Using the FlowLight 258
8.5.5 Automatic State Changes and Accuracy 259
8.5.6 Continued Usage of FlowLight 262
8.5.7 Professional Differences in Using the FlowLight 262

8.6 Discussion . 263
8.6.1 Reasons for FlowLight’s Positive Effects 263
8.6.2 Accuracy of Automatic Interruptibility Measure 264
8.6.3 Cost of Not Interrupting 265
8.6.4 Threats and Limitations 265

8.7 Conclusion . 266
8.8 Acknowledgments . 267

xvi Contents

List of Figures

1.1 Overview of our research questions. 8
1.2 Overview of the components used in PersonalAnalytics. 10
1.3 Screenshot of the daily retrospection in PersonalAnalytics. 17
1.4 FlowLights mounted on study participants’ cubicle walls. 19
1.5 Thesis roadmap. 42

2.1 Notification to Prompt Participants to Respond to the Experience
Sampling Survey. 51

2.2 Screenshot of the Experience Sampling Survey (Pop-Up). 51
2.3 Total Hours of Work versus Hours Active. 57
2.4 3 Types of Developers and their Perceptions of Productivity over

the Course of a Work Day. 62

3.1 Comparing the clusters with respect to words that developers
associate with productive workdays. 85

3.2 Comparing the clusters with respect to words that developers
associate with unproductive workdays. 86

4.1 Conceptual framework for good workdays. 107
4.2 Conceptual framework characterizing typical workdays. 112

5.1 Overview of study design and outcomes. 146
5.2 Screenshot of the second page of the experience sampling pop-up

that asked participants to self-report their task types. 151

6.1 Summary of the Two-Phase Study Describing the Process. . . . 172
6.2 Screenshot of the Daily Retrospection in PersonalAnalytics. . . 183
6.3 Screenshot of the Self-Reporting Pop-Up to Collect Perceived

Productivity Data and Engage Users. 186

7.1 Participants’ Self-Reports on the Value and Impact of Self-Reflection228

8.1 Evolution of the Physical Indicator of the FlowLight Over Time 245

Contents xvii

8.2 FlowLight Users Over Time . 246
8.3 Timeline of Study Procedure . 250
8.4 Logged Interruptions and State Changes Before and After In-

stalling the FlowLight. 255
8.5 Results of a Subset of the Survey Questions. 255
8.6 Time Spent in each State Before (Pre) and After (Post) Installation.260

List of Tables

1.1 Overview of the studies we conducted to answer our research
questions. 9

2.1 Study Participants . 50
2.2 Data Collected by the Monitoring Application. 53
2.3 Top 10 Used Applications (Sorted by Usage). 59
2.4 Developers’ Fragmented Work: Activities Performed. 60
2.5 Explanatory Productivity Models for Participants 67
2.6 Summary of Some of the Study Key Findings. 68
2.7 Models to Predict High / Low Productivity Sessions. 75

3.1 The Six Clusters/Personas from the Survey 88

4.1 Top 5 activities where respondents reported spending more or less
than usual time in on atypical workdays. 117

4.2 Contingency table for the relationship between good and typical
workdays. 117

4.3 Mean and relative time spent on activities on developers’ previous
workdays. 118

4.4 The six workday type clusters. 125
4.5 How meetings and interruptions influence good and typical workdays.127

5.1 Self-reports from study 2. 153
5.2 Features analyzed in our study and their importance for predicting

task switches and task types. 154

xviii Contents

5.3 Overview of the performance of the task switch detection, for both
individual and general models. 159

5.4 Overview of the task type categories 162

6.1 Overview of the Two-Phase Study Describing the Method, Partic-
ipants, their Employer and Study-Durations. 180

6.2 Survey Responses on Awareness Change. 197
6.3 Participants’ Ratings on the Novelty and Potential for Behavior

Change of Personalized Insights. 199

7.1 Daily Self-Reflection Questions. 214
7.2 Stages of Reflective Goal-Setting [Travers et al., 2015]. 214
7.3 Developers’ Work Habit Goals and Strategies. 226
7.4 Summary of the Study Key Findings. 232

Acronyms and Definitions

Activity is an action undertaken by the developer during his or her work, e.g.,
navigating code or reading an email.

API application programming interface

Context or task context, refers to the mental model the developer builds at
work; consisting of information, resources and artifacts about one or several
tasks.

DnD do not disturb

Goal or work habit goal, describes a target or outcome habit that developers
set for themselves to improve their productivity.

h hour(s)

IDE integrated development environment

IM instant messaging

Interruptibility is a person’s availability for interruptions.

min minute(s) or minimum

max maximum

PI is short for personal informatics, and describes tools and methods to self-
quantify oneself and identify opportunities for self-improvements. Other
related terms are self-tracking, self-monitoring, and self-surveilling.

2 Contents

RQ research question

s second(s)

Self-Monitoring refers to the process where a user continuously tracks certain
behaviors, either automatically using a self-monitoring tool or manually.

Self-Reflection refers to the process where a user purposefully reviews and
thinks about his or her behaviors.

Stdev or std. dev. standard deviation

Strategy is the system developers employ to make progress towards and even-
tually reach their (work habit) goals.

Task is a work assignment with a specific objective that developers divide their
work into, e.g., fixing a bug or preparing for a team meeting.

TTM is short for Transtheoretical Model of behavior change, invented by Prochaska
and Velicer [1997]. TTM models behavior change as a sequence of stages
which the person advances through until a behavior change can be main-
tained.

1
Synopsis

There is a common refrain that repeats itself in similar forms every couple of years:
our inability to produce enough software to satisfy the needs of the world. For
example, in 1968, attendees at the first NATO software engineering conference
coined the term software crisis [Naur and Randell, 1969] and Andreessen [2011]
wrote about software eating the world, expressing that the need for software
keeps outstripping our ability to produce it.

There are a couple of ways of addressing the gap between software demand
and supply. We could try to reduce the demand, which seems unlikely to succeed.
Or, we could try to increase the supply, namely our ability to produce software.
Our research targets the latter, specifically to increase the supply of software
by improving software developers’ productivity. In particular, we focus on two
aspects for improving developers’ productivity: better understanding developer
productivity and using these findings to foster productivity at work.

4 Chapter 1. Synopsis

Examining Productivity. A substantial amount of research on developer pro-
ductivity has been undertaken over the past four decades. The majority of
this research focused on defining and measuring productivity from a top-down
perspective, formally defined as the ratio between output and input in the Oxford-
Dictionary [2019]. In particular, this research aimed at quantifying productivity
solely in terms of output measures, i.e., the artifacts and code created per
unit of time, for example the lines of source code modified per hour [Devanbu
et al., 1996], the number of function points created per day [Jones, 1994], or
the tasks completed per month [Zhou and Mockus, 2010]. Another body of re-
search considered technical factors associated with productivity, such as software
size [Albrecht, 1979] and complexity [Brooks Jr, 1995], and soft factors, such as
the effect of workplace settings, meetings and interruptions, with the latter ones
shown to be one of the biggest impediments to productivity (e.g., [Czerwinski
et al., 2004; DeMarco and Lister, 1985; Mark et al., 2005; Parnin and Rugaber,
2011; Perry et al., 1994b]). However, these studies generally do not consider the
specifics of developers’ workdays, and the individual differences in developers’
work that might affect productivity [Gonçalves et al., 2011; Singer et al., 2010].
As a result, only very little is known about how developers themselves perceive
their own productivity and how these insights could be used to foster productive
work [Rooksby et al., 2016; Treude and Storey, 2010]. In our research, we aimed
to get a deeper understanding of software developers’ work from a bottom-up
perspective, i.e., the individual developer perspective, by investigating when
developers perceive themselves as productive, how they organize their workdays,
what factors impact their productivity, and how their perceived productivity
relates to their work activities.

Fostering Productivity. An improved understanding of the factors that impact
developers’ work and productivity allows to better support developers at their
work. However, most developers are not aware of how these factors impact
their own productivity, even though they are generally interested in better
understanding and improving themselves [Li et al., 2015; Perry et al., 1994b]. In
a second step of our research, we aimed to increase developers’ awareness about

5

their productive and unproductive habits and to motivate self-improvements,
by supporting them through three persuasive technologies: self-monitoring,
self-reflection, and an external indicator. Persuasive technology, as coined by
Fogg [2003], refers to technology that is designed to change users’ attitudes or
behaviors through persuasion and social influence, but not coercion. In several
areas of life, especially the health and physical activity domains, these persuasive
technologies have been shown to provide users with meaningful insights into
their behavior, which motivate positive behavior changes, such as becoming more
active or losing weight (e.g., [Consolvo et al., 2008b; Fogg, 2003; Gasser et al.,
2006; Kersten-van Dijk et al., 2017; Lee et al., 2017; Munson and Consolvo,
2012]). More recently, researchers have looked into using automation to assist
with workplace self-monitoring, by logging users’ computer interaction data.
Approaches such as RescueTime [2019], TimeAware [Kim et al., 2016] and
Codealike [2019] have largely focused on top-down approaches using pre-defined
measures of productivity that are visualized to the user. In software development,
however, little is known about developers’ expectations of, requirements for, and
impact of these approaches on their behavior [Rooksby et al., 2014; Treude and
Storey, 2010]. The Personal Software Process (PSP) by Humphrey [1996] has
taken a first step towards workplace self-monitoring and -reflection for developers.
PSP allows the monitoring of and reflecting on a set of basic metrics, such as
time estimates and quality. While the method showed great potential to improve
developers’ performance and quality of software, applying it in practice was
shown to be time consuming and error prone, since PSP requires to collect the
data manually [Johnson and Disney, 1998]. In our work, we aimed to extend
PSP by developing and evaluating a self-monitoring approach that combines
self-reports with automatically collected data. We used our insights on developers’
work and productivity, and the automatically captured computer interaction
data, to develop models. Finally, we explored how to best communicate these
models as insights to developers to motivate productive self-improvements at
work, for example through dashboards within the self-monitoring system or even
through an external indicator.

6 Chapter 1. Synopsis

In summary, we aimed to foster developer productivity at the workplace. To
achieve this objective, we first developed models of work and productivity by
studying developers work and productivity, and then integrated these models
into tool support that we evaluated through various field studies.

This leads to the following hypothesis:

Hypothesis: Models of developers’ work and their computer interaction
can be used to foster developer productivity through a) self-monitoring, b)
self-reflection, and c) an external indicator.

To investigate our hypothesis, we focused on three main research questions
that are described in Chapter 1.1. Chapter 1.2 provides an overview of the
approach and main findings, consisting of seven studies we performed to answer
our research questions. We discuss the main threats to validity of our approach
in Chapter 1.3, challenges in Chapter 1.4, potential future work in Chapter 1.5,
and related work in Chapter 1.6. Finally, we summarize the contributions of our
work in Chapter 1.7 and provide a roadmap of this thesis in Chapter 1.8.

1.1 Research Questions

To validate our hypothesis, we examined the following research questions:

Research Question 1: How does a software developer’s workday look like
in terms of a) activities, b) tasks, c) work fragmentation, and d) perceived
productivity?

Based on our improved understanding of developers’ work and productivity,
we further explore how to foster productivity:

Research Question 2: Can we foster productivity by increasing developers’
self-awareness about work and productivity through a) self-monitoring and b)
reflective goal-setting?

Research Question 3: Can we foster productivity by increasing develop-
ers’ external awareness about work and productivity through modeling and
externally indicating interruptibility?

1.1 Research Questions 7

Figure 1.1 gives an overview of the relationship between the research questions.

RQ1: Examining Developer Work and Productivity. Several studies have
looked into developers’ work and productivity. Most have generally focused on
specific factors, such as meetings, emails or interruptions, which were shown
to impact developers’ work, decrease productivity, and negatively impact the
quality of output (e.g., [Boehm, 1987; DeMarco and Lister, 1985; Meyer et al.,
2014; Murphy-Hill et al., 2019]). Yet, little is known about how developers’
structure and organize their workdays, and how developers perceive their produc-
tivity throughout these days. In RQ1, we examined developers’ workdays more
holistically, and investigated individual differences between developers’ work.
This includes gaining a better understanding of the time they spend at work in
different activities and tasks, their habits at work, and how their work influences
their perceptions of productivity.

RQ2: Increasing Self-Awareness to Foster Productivity. In other areas of
life, especially the physical activity and health domain, self-monitoring and
self-reflection have been shown to increase users’ awareness about positive and
problematic behaviors (e.g., [Bentley et al., 2013; Consolvo et al., 2008a,b; Fritz
et al., 2014]). The gained insights then motivated users to define self-improvement
goals, which fostered positive behavior changes (e.g., [Gasser et al., 2006; Locke
and Latham, 2002; Monkaresi et al., 2013; Munson and Consolvo, 2012]). While
several related approaches for the workplace already exist (e.g., [Kim et al., 2016;
RescueTime, 2019; Whittaker et al., 2016]), little is known about developers’
expectations of and experience with these tools, and how they eventually impact
developers’ work and productivity. In our research, we want to map the positive
impact of self-monitoring and self-reflection to the software engineering domain.
With RQ2a, we studied how to leverage self-monitoring to increase developers’
self-awareness about work and productivity, by allowing them to self-monitor
a broad variety of aspects relevant to their work that we identified in RQ1.
In particular, we first examined developers’ requirements for a workplace self-
monitoring tool. We then evaluated how they are using and engaging with such

8 Chapter 1. Synopsis

a tool in practice, and how the insights should be communicated best to be
actionable enough to motivate productive behavior changes. In RQ2b, we ran
a follow-up study to explore how purposefully self-reflecting about work and
productivity can support the identification of opportunities for self-improvements,
and the definition of goals and actionable strategies that motivate productive
behavior changes.

RQ3: Increasing External Awareness to Foster Productivity. Previous work
has identified interruptions as one of the most prominent factors that can impact
developers’ productivity. While interruptions can also be beneficial, for instance
to resolve problems quickly [Isaacs et al., 1997], they can be very costly when
they happen at an in-opportune moment, such as when the developer is very
focused or engaged in a difficult task. Amongst other insights on interruptions,
studies have found that they occur frequently and interrupt developers’ work
on their main tasks, which takes more time to finish them and results in more
errors (e.g., [Bailey et al., 2001; Czerwinski et al., 2004; González and Mark,
2004; Parnin and Rugaber, 2011]). In our work, we leveraged our findings from
RQ1 to develop a model of developers’ availability for interruptions (related to
their focus), and used it to increase developers’ awareness about their co-workers’
focus. Subsequently, we studied how to present the model using an external
indicator to increase awareness about and discourage in-person interruptions.

Figure 1.1: Overview of our research questions.

Examining Developers’
Work and Productivity (RQ1)

Chapter 2 (TSE’17)
Chapter 3 (ESEM’17)
Chapter 4 (TSE’19)
Chapter 5 (in submission)

Chapter 8 (CHI’17)

Increasing Self-Awareness
through Self-Monitoring (RQ2a)

Increasing External Awareness
through an External Indicator (RQ3)

Increasing Self-Awareness
through Reflective Goal-Setting (RQ2b)

Fostering Productivity

Chapter 7 (TSE’19)

Chapter 6 (CSCW’18)

1.2 Research Approach and Main Findings 9

1.2 Research Approach and Main Findings

To explore and answer our research questions, we conducted a variety of studies
with professional software developers, including field studies, observations and
surveys. An overview of our studies is summarized in Table 1.1. In the following,
we provide a summary of the main findings and insights from each study. More
details and further results are provided in Chapters 2 to 8, as well as in the
corresponding publications.

Table 1.1: Overview of the studies we conducted to answer our research questions.

Study RQ C
I
M
on

it
or
in
g

E
xp

.
Sa

m
pl
in
g

O
bs
er
va
ti
on

In
te
rv
ie
w

Su
rv
ey

#Part. Length Chapter

Workdays & Productivity 1 X X X 20 2 weeks 2
Productivity Personas 1 X 413 3
Good & Typical Workdays 1 X 5971 4
Task Switches and Types 1 X X X X 25 4 hours, 2-4 days 5
Self-Monitoring 2 X X X 63 3 weeks 6
Reflective Goal-Setting 2 X X 52 2-3 weeks 7
External Indicator 3 X X X X 449 2 months 8
CI: computer interaction, # Part: number of professional software developers studied.

As tool support for four of our studies, we developed and used PersonalAna-
lytics. PersonalAnalytics consists of a monitoring component that we built to
automatically capture developers’ computer interaction, including user input,
application use, documents and development projects accessed, websites visited,
emails/IMs sent/received, meetings scheduled, and code reviews worked on. Per-
sonalAnalytics also contains an experience sampling 1 component that allowed us
to prompt study participants in periodic intervals to self-report their perceived

1Experience Sampling Method (ESM) is a research method to ask participants at periodic
intervals to self-report some behavioral or mental aspects [Consolvo and Walker, 2003; Larson
and Csikszentmihalyi, 2014].

10 Chapter 1. Synopsis

productivity, task switches, or interruptibility. The collected data was then used
to model developers’ work and productivity, and visualized in the Retrospection,
a daily and weekly summary of developers’ work (RQ2). The collected data
was further used in the FlowLight, to sense and externally indicate a developers’
availability for interruptions (RQ3). An overview of the components that provide
the basis for PersonalAnalytics is presented in Figure 1.2. PersonalAnalytics is
available on GitHub 2.

Figure 1.2: Overview of the components used in PersonalAnalytics.

External Indicator

Experience Sampling

Self-Monitoring & Self-Reflection

Increasing Awareness & Fostering Productivity

Retrospection FlowLight

Computer Interaction Monitoring

2https://github.com/sealuzh/PersonalAnalytics

https://github.com/sealuzh/PersonalAnalytics

1.2 Research Approach and Main Findings 11

1.2.1 RQ1: Examining Developer Work and Productivity

The objective of RQ1 is to increase our understanding of developers’ work habits
and how they influence productivity. To gain a broader understanding and better
generalize the results, we performed a series of four studies using a variety of
methods that ranged from observations to multi-week field studies with Person-
alAnalytics deployed, and studying professional software developers working for
seven different companies. Based on our analysis of the gathered data, our main
observation is that developers spend their time on a wide variety of activities and
tasks that they regularly switch between, resulting in highly fragmented work.
Our findings further showed that while productivity is very personal, there are
observable patterns across developers’ productivity perceptions.

Workdays & Productivity. [RQ1 a) activities, b) tasks, d) perceived productivity]

In our first study, we aimed at investigating the activities developers pursue at
work, what fragments their work, and how their work habits related to their
perceptions of productivity. To that purpose, we conducted a two-week field study
with 20 professional software developers from various companies. We deployed the
monitoring component of PersonalAnalytics, and employed experience sampling
in the form of periodic self-reports on developers’ perceived productivity. With
the study, we collected a dataset of 220 workdays from the 20 participants,
resulting in a total of 2197 hours of computer usage data and self-reports. To get
a higher-level view on developers’ work, we developed an automated mapping of
the applications that participants used into activities.

The analysis of the data we collected with the monitoring component revealed
that developers spend their time on a wide variety of activities and switch
regularly between them, which results in highly fragmented work. On average,
developers remain in an activity only between 20 seconds and 2.0 minutes. Overall,
a typical workday is on average 8-9 hours long, with one fourth of it spent with
coding related activities, and another fourth spent with collaborative activities
such as meetings, emails and IM. There are, however, notable differences between
teams and companies, such as the time spent on emails ranged from less than
one minute to more than an hour a day for developers in different companies.

12 Chapter 1. Synopsis

Investigating developers’ self-reported productivity ratings revealed large
variations amongst developers and that productivity is a highly personal matter.
A closer investigation revealed that there are observable patterns across developers’
productivity perceptions. For example, we found that developers’ productivity
perceptions follow the same habitual patterns each day as each can be roughly
clustered into either morning-person (20%), low-at-lunch person (35%), and
afternoon-person (40%). We also built explanatory models to study which
factors contribute most to developers’ perceptions of productivity. None of
the explanatory models that we built relating actions and activity to perceived
productivity was able to explain the productivity perceptions of a large number
of developers. However, many developers consider email, planned meetings
and work unrelated browsing as less productive activities, and usually perceive
themselves as more productive when they have a higher user input and spend
their time with coding.

Productivity Personas. [RQ1d) perceived productivity] The individual differences
in developers’ productivity perceptions will make it more challenging to determine
meaningful, universal behavior change plans to foster productivity for RQ2
and RQ3. To explore whether we can determine further groups of developers
with similar perceptions of productivity, and better understand how various
productivity factors influence them differently, we conducted an online survey
at one large software organization with 413 professional software developers.
First, participants rated a list of previously identified productivity factors based
on importance, including the coding time, email workload, interruptions and
workplace setting. After normalizing participants’ responses, we used a clustering
algorithm, called Partitioning Around Medoids (PAM) [Kaufman and Rousseeuw,
1987], to identify groups of developers with similar productivity perceptions.

Overall, we identified six personas describing developers’ productivity per-
ceptions: social, lone, focused, balanced, leading and goal-oriented developers.
Focused developers, for example, feel most productive when they are working on
a single task at a time, with few interruptions. Contrary, social developers feel
most productive when they are helping others and collaborate frequently. These

1.2 Research Approach and Main Findings 13

personas are a first step towards a set of developer productivity traits, such as
goal-orientation, single-task focus, or socialness. These traits can then help to
better understand and compare developers’ individual productivity perceptions,
and to tailor approaches for improving work and productivity to these personas.
More details can be found in Chapter 3.

Good & Typical Workdays. [RQ1a activities] While our first study revealed
early insights into typical developer workdays, we were interested in better
understanding which factors influence typical and atypical workdays, and what
makes them good or bad. We were further interested in investigating similarities
in developers’ workday structures and in studying how developer workdays are
impacted by meetings and interruptions. We conducted a large-scale survey
collecting 5971 responses at a multi-national software development organization.
In our qualitative analysis of the survey, we applied a coding strategy, consisting
of Open Coding, Axial Coding and Selective Coding iterations, as defined
by Strauss and Corbin [1998]’s Grounded Theory. We then also quantitatively
analyzed the collected data, by comparing the time developers spend on activities
on workdays they considered good and typical, clustering their workdays into
workday types, and investigating the effect that various collaborative activities
have on developers’ perceptions of good and typical workdays.

Extensive team discussions of the categories that resulted from the coding
strategy allowed us to understand their relationships and develop two concep-
tual frameworks that characterize developers’ good and typical workdays (see
Chapters 4.5.1 and 4.5.2). Our investigation into the factors that influence how
good and typical developers perceive their workdays highlighted the importance
of agency, i.e., developers’ ability to control how they organize their work and
reduce factors that randomize work, including infrastructure issues, administra-
tive tasks, interruptions or unplanned meetings. While previous work uniformly
concludes that meetings and interruptions are unproductive overall, the scale of
our survey allowed us to uncover nuances, such as that their impact depends on
the development phase: during specification, planning and release phases, they
are common, but productive.

14 Chapter 1. Synopsis

Task Switches and Types. [RQ1b) tasks] Since we found that task work and
task switches are an important factor for fragmenting developers’ work and
impacting their productivity, we were further interested in better understanding
how developers organize work on the granularity of tasks, and how they switch
between tasks. To that purpose, we developed a model to automatically detect
developers’ task switches and task types, based on their computer interaction
data and the semantic information of the artifacts they work with. In two field
studies, one 4-hour observational study and a multi-day study using experience
sampling, we collected task data from 25 professional software developers using
the monitoring component of PersonalAnalytics. After combining and cleaning
the data from the two studies, we extracted a total of 42 temporal and semantic
features that we used to train a machine learning classifier and evaluated the
resulting models’ ability to predict task switches and task types in the field.
We built both, individual models, to train and test with data solely from one
participant, and general models to train with data from all participants except
one and to test on the remaining one.

From the various classification algorithms that we trained and tested; Random
Forest resulted in the highest accuracy. Our analysis revealed that it is possible
to use temporal and semantic features from developers’ computer interaction
data to automatically detect task switches and task types in the field with high
accuracy of 87% and 61% respectively. On average, participants switched tasks
6.0 times per hour and spent 13.2 minutes on a task before switching, thus,
confirming the high fragmentation of developers’ work that we identified before.
Besides improving our understanding of developers’ tasks and how switching
between them fragments developers’ work, our automated task detection makes
it possible to better support existing approaches that capture task context,
reduce task switching and support task resumption, which previously required
manual interaction of the developer, e.g., by self-reporting the task boundaries
(e.g., [Dragunov et al., 2005; Fogarty et al., 2005; Kersten and Murphy, 2006;
Züger et al., 2017]).

1.2 Research Approach and Main Findings 15

1.2.2 RQ2: Increasing Self-Awareness to Foster Productivity

We conducted two field studies to answer RQ2. In the first study, we evaluated
the potential of workplace self-monitoring to increase developers’ awareness about
work and productivity (RQ2a). In a follow-up study, we explored how purposefully
self-reflecting about work and productivity can support the identification of
opportunities for self-improvement, and the definition of goals and actionable
strategies that motivate productive behavior changes (RQ2b).

Self-Monitoring (RQ2a). To examine how self-monitoring can increase devel-
opers’ self-awareness about productivity and work, we followed a mixed-methods
approach. First, we used iterative, user-feedback driven development (N=20)
and a survey (N=413, survey from above) to infer design elements for workplace
self-monitoring. We then included the inferred design elements into Person-
alAnalytics, by adding a self-monitoring component, and by simplifying our
experience sampling component prompting users to self-report productivity to be
less intrusive and quicker to respond to. To enable multi-faceted insights in the
self-monitoring component, the captured data is aggregated and visualized in a
daily retrospection (see Figure 1.3), and a weekly summary. Next, we conducted
a field study with 43 professional software developers during three work weeks
to evaluate the experience with and the impact of PersonalAnalytics. Through-
out the study, we collected qualitative and quantitative data from participants
through multiple surveys, email feedback, and usage logs of PersonalAnalytics
that we analyzed again using a coding strategy informed by Strauss and Corbin
[1998]’s Grounded Theory approach.

Our analysis showed that the retrospection increases developers’ self-awareness
about work and productivity. 82% said that the retrospections’ visualizations of
the personalized list of measures increased their awareness and provided novel
insights. For example, developers learned about the time they spent collaborating
or making progress on tasks, how their productivity changes over the course
of a workday, or the extent of their work fragmentation. The retrospection
further helped to rectify misconceptions users had about their work, such as
how much time they actually spend with emails or work-unrelated web browsing

16 Chapter 1. Synopsis

(e.g., on Facebook). While we initially used the experience sampling method to
collect data about developers’ productivity perceptions, the final questionnaire
revealed that the periodic self-reports increased the awareness about work for
59.2% of all participants. PersonalAnalytics’ ability to let users self-report their
productivity instead of automatically measuring it, was highly appreciated, since
many participants do not think an automated measure can accurately capture
an individual’s productivity. It further helped them to assess whether they spent
their past work hour efficiently, whether they worked on something of value, and
whether they made progress on their current task.

We further investigated if the insights gained from PersonalAnalytics can
foster productive self-improvements. We learned that slightly less than half
of the participants (41%) changed a few of their habits, including trying to
better plan their work (6%), trying to optimize how they spend their time
with emails (13%), or trying to focus more and avoiding distractions (19%).
41% of our participants reported not having changed any behaviors. Several
participants stated that the visualizations and insights were not concrete and
actionable enough to know what or how to change, and they suggested to add
recommendations to PersonalAnalytics that suggest self-improvements at work.
These recommendations ranged from pop-ups to recommend a break from work,
all the way to intervening or blocking specific applications or websites for a
certain time.

Reflective Goal-Setting (RQ2b). To explore how we can provide developers
with more actionable insights that allow them to define self-improvement goals
and foster productive behavior changes, we ran another field study. Inspired by
Humphrey [1996]’s Personal Software Process (PSP) and diary studies in other
areas of research, we combined self-reflection with goal-setting, and designed a
reflective goal-setting study. In this study, we asked 52 professional software
developers to reflect about work on a daily basis for several weeks, as well as
define and refine goals and actionable strategies to improve their work habits.

Our reflective goal-setting study resulted in a rich set of work habit goals
and strategies that we analyzed. The goals can be broadly categorized into

1.2 Research Approach and Main Findings 17

Figure 1.3: Screenshot of the daily retrospection in PersonalAnalytics.

improving time management, avoiding deviations from planned work, improving
the impact on the team, maintaining work-life balance, and continuous learning.
We found that continuous self-reflection can be an important step towards
productive self-improvements in the workplace, since participants stated that it
supports the identification of goals (81%) and actionable strategies (83%). The
daily self-reflections not only increased developers’ awareness about work habits,
progress and achievements (85%), but also led to productive behavior changes
(80%). As a result, while initially being skeptical towards “journaling” their work,
most participants (96%) stated afterwards that they could imagine to continue
self-reflecting on a regular basis. Few participants, however, mentioned that
constantly self-reflecting may increase pressure to always perform well and could,

18 Chapter 1. Synopsis

thus, turn into a burden without tool support that would make self-reporting
more convenient. We conclude that continuous reflective goal-setting enables
developers to improve and maintain good work habits. In Chapter 7, we discuss
these results with regards to prior work on self-reflection with other types of
knowledge workers, and how tools could support developers with their reflective
goal-setting and how they might foster long-term self-reflection.

1.2.3 RQ3: Increasing External Awareness to Foster Produc-
tivity

External Indicator. To increase developers’ awareness of their co-workers’ in-
terruptibility at work and discourage interruptions at in-opportune moments, we
developed and studied the FlowLight. The FlowLight is based on the monitoring
component of PersonalAnalytics and combines a physical interruptibility indi-
cator in the form of a traffic-light like LED with an automated interruptibility
measurement (see Figure 1.4). Our interruptibility is based on a developer’s
computer interaction and approximates how interruptible (or focused) the devel-
oper is. Inspired by traffic-lights, the FlowLight changes its color to indicate a
user’s interruptibility: available for interruptions as green, busy as red, do not
disturb as pulsating red, and away as yellow. The user’s interruptibility state is
calculated in real-time, based on mouse and keyboard input 3, the user’s historical
interaction data, and a smoothing function. Whenever a user’s interruptibility
state changes, the FlowLight updates the color of the LED light. It further
changes the user’s Skype for Business presence status to additionally reduce
interruptions over IM. We evaluated the accuracy of our interruptibility measure
and FlowLight’s ability to increase the external awareness and reduce in-person
interruptions. To that purpose, we conducted a large-scale field study with 449
participants working for one multi-national company in 12 different countries. We
asked participants to self-report in-person interruptions during one week before
installing the FlowLight, and again a week after they familiarized themselves
with the FlowLight for another week (i.e., to reduce Hawthorne-type or novelty

3These data sources were selected since they can be measured non-invasively and to limit
privacy concerns.

1.2 Research Approach and Main Findings 19

Figure 1.4: FlowLights mounted on study participants’ cubicle walls.

(a) FlowLight (b) FlowLights mounted in an office in India

effects). At the end of the study, we conducted surveys and interviews to learn
more about the impact and value of FlowLight, which resulted in a rich dataset of
36 interruption logs, 23 interview transcripts, 183 survey responses, 47 FlowLight
usage data logs, and activity logs from all 449 participants.

Analyzing the 36 interruption logs showed that continuously indicating the
interruptibility of co-workers significantly reduces the amount of in-person in-
terruptions by 46%. Participants reported higher productivity as a result of
experiencing less costly interruptions, which increased the time they could spend
focused on their work tasks. Another insight was that the FlowLight increases
users’ awareness about the cost of interruptions. For example, participants
reported that they now think more about whether interrupting a co-worker is
necessary, and if not, they try to find a more suitable time. Participants also
reported that the FlowLight encouraged focusing for longer intervals on their
work tasks, especially when it turned red and they wanted to keep it that way.
We found that 71% of the participants perceived FlowLight’s interruptibility
status as accurate. Nonetheless, there is potential for improvement, such as times

20 Chapter 1. Synopsis

they are not actively working on the computer (e.g., doing paper work) or when
they are thinking or reading. For example, webcams or biometric sensors worn
by the users might help to better understand their activities and might help to
increase the accuracy of the interruptibility classifier (e.g., [McDuff et al., 2012;
Samara et al., 2017; Züger et al., 2018]). Even two months after the installation,
86% of participants continued using the FlowLight. The FlowLight’s successful
application over multiple months demonstrates that combining an external indi-
cator with an automated interruptibility measurement that is based on computer
interaction data is effective to reduce costly in-person interruptions and increase
productivity. More details about our findings can be found in Chapter 8.

1.3 Threats to Validity

In the following, we present our main threats to the validity of our research, and
discuss how we addressed and mitigated them.

External Validity. A common challenge of field studies, limiting the general-
izability of the results, is having access to only a small set of participants and
companies over a limited time span. In our studies, we took a number of steps to
mitigate threats to generalizability, including studying only professional software
developers (no students) with a broad range of experience (0.5 to 40 years), and
working for 17 different companies (startups to multi-national corporations) in 12
different countries (including Canada, US, India, Brazil, Korea and Switzerland).

In three studies, the external validity of our evaluation of PersonalAnalytics
and the FlowLight might be threatened by only having participants from a single
(multi-national) corporation each. To mitigate the risks, we ran the studies
at many separate teams within each corporation, in different subsidiaries of
the corporation, working on different projects and with different development
processes. Previously, empirical studies performed on a single case (i.e., one
company) were shown to contribute to scientific discovery [Flyvbjerg, 2006].

The voluntary participation in our studies may also result in a certain self-
selection bias towards participants who are more willing to quantify various

1.3 Threats to Validity 21

aspects of their life and use the collected data to improve themselves, which
is a common threat of studies applying or evaluating personal informatics sys-
tems [Kersten-van Dijk et al., 2017]. To reduce this risk, we openly advertised
the studies to encourage any professional software developer to join, were very
transparent and upfront about the study objectives, pro-actively answered pri-
vacy concerns, and let participants continue their regular work to minimize the
studies’ intrusiveness.

Since developers’ work and activities vary greatly depending on the current
project stage and daily discrepancies, another limitation might be that our field
studies only capture a small excerpt of developers’ work, especially for the ones we
conducted over only a few days. To mitigate these risks, we recruited participants
from various companies, working in different teams and at different stages of
their project, and we asked them about the representativeness of their work
to make sure the studied timeframe was representative of their regular work
(i.e., not particularly busy or quiet). We further plan to replicate our studies by
considering additional variables, such as company culture, size and processes, as
well as developers’ personality or gender (Chapter 1.5).

Internal Validity. Running a monitoring application on participants’ computers
might pose privacy concerns to participants or their companies, e.g., they might
feel observed or fear their managers will get access to the data. To reduce these
concerns, we were as transparent and explicit as possible about the data we
collected, the people who have access, and how we planned to analyze the data.
In all studies, participants could access the raw data logs and were given the
opportunity to obfuscate them. Additionally, we logged the data only locally on
the participants’ machines, and never automatically uploaded the data without
participants’ prior consent and option to manually check the data package
before sharing it with us. We further never made the logged data available to
participants’ co-workers or managers.

While our reliance on experience sampling (ESM) allowed us to gain detailed
insights into developers’ individual productivity perceptions, tasks worked on
and interruptions at scale, the method also poses threats to validity. First, we

22 Chapter 1. Synopsis

rely on the accuracy of participants’ self-reports who may not always have been
able to recall everything accurately, or filling out the pop-ups regularly might
be burdensome after a while. To address these concerns, we minimized the
number of experience sampling surveys and allowed participants to postpone
them in case they appeared at an in-opportune or intrusive moment, as suggested
by Csikszentmihalyi and Larson [2014], the inventors of ESM. Furthermore,
our various test-runs and studies helped to optimize the experience sampling
surveys and make them easier to respond to, such as limiting the number of
required clicks and visualizing cues that are helpful to respond accurately. In
the surveys and interviews that we performed after the studies to learn about
participants’ experience and potential issues with the self-reports, we generally
got positive feedback about the method. In one study, participants even reported
that the periodic self-reports were valuable as they increased their awareness
about productivity and work (Chapter 6.6.3).

Construct Validity. The main threat to construct validity stems from the data
that we collected automatically using PersonalAnalytics, since our monitoring
component is limited to data trackers that we build prior to the studies. We
tried to mitigate this risk by capturing a broad range of data on developers’
work, including logging application usage, user input, emails, meetings, web
browsing and more. In most cases, we added experience sampling and further
collected qualitative data from subjects from surveys or interviews to validate our
approach and observations, triangulate the data, and get even deeper insights
into their work. Nonetheless, we cannot exclude that there are other factors that
influence developers’ work, productivity and interruptions.

Furthermore, our quantitative data is limited to developers’ work on their
computer only. Time they spent away from the computer, e.g., at a break or in a
meeting, is not captured. In Chapter 1.5, we discuss how future work could study
how taking advantage of other tracking technologies, such as webcams or biometric
sensors worn by the users would allow us to capture an even more holistic picture
of developers’ work. Running a computer monitoring application in real-world
scenarios might capture inaccurate data, due to bugs in the logging application

1.4 Challenges & Limitations 23

or different infrastructure set-ups. To mitigate these risks, we extensively tested
and constantly improved the monitoring application; no major problems were
identified during the studies.

Understanding, categorizing and analyzing the collected data poses another
threat to the construct validity of our results, since it is not always straightforward
to identify or extract all activities or tasks developers perform from the collected
data. For example, an email discussion with co-workers on a code component
could be categorized as a specific developer task of solving a bug, or to the more
general task of answering emails. To mitigate this risk, we observed participants
for extended periods of time, asked them to validate the collected data where
possible, and carefully discussed our assumptions within the research team, also
based on related work.

Another threat to the construct validity of our results is that the first Open
Coding step of the analysis was usually performed by one researcher only (i.e.,
the author of this PhD thesis). To reduce bias and increase construct validity,
we usually performed the subsequent steps of Axial and Selective Coding in a
team, discussing responses that could not distinctively be mapped, representative
quotes, and the relationships between the categories.

1.4 Challenges & Limitations

There are multiple challenges we faced throughout our research. In particular,
there are difficulties to generalize the measurement of productivity, and challenges
that are inherent to field studies, such as demonstrating long-term behavior
change, recruiting participants for long-term studies, and privacy concerns from
collecting sensitive data.

Productivity is Individual. A recurring theme in all our studies was that
developer productivity is a highly personal matter, due to the many factors that
impact developers’ work and productivity differently. It is, thus, challenging to
develop a single model of productivity that is generalizable to all developers.
Some of the productivity themes we identified, such as developers’ productivity

24 Chapter 1. Synopsis

personas and how productivity changes over the day (morning-, low-at-lunch,
and afternoon-person), are a first step towards identifying groups of developers
with similar perceptions of productivity (Chapter 1.5).

Measuring Productivity. One implication of the varying impact that the pro-
ductivity factors can have on developers is that actually measuring productivity
poses two main risks and unintended consequences. First, measuring productivity
can negatively influence developers’ behaviors, either because it pressures them
to perform in a certain way to have a high measured “productivity”, or it distorts
incentives and developers might start to “game” the system, especially if the
measure is inaccurate or unfair [Muller, 2018; Treude et al., 2015]. Second,
good management requires qualitative insights into team behavior, instead of
a quantitative measure [Sadowski and Zimmermann, 2019]. If managers rely
on a productivity measurement only, they could make wrong conclusions and
bad decisions, instead of understanding how their developers are working and
learning what makes them more productive. One simple example is the previously
suggested use of lines of code to quantify productivity: developers would just
write more code to appear more “productive”, but still solve the same problem
only. For these two reasons, our work did not aim to quantify productivity. In-
stead, we focused on understanding productivity from the bottom-up, to support
individual developers with insights into what happens during productive or un-
productive times, and to allow the identification of productive self-improvement
opportunities that are tailored to the individual.

Demonstrating Behavior Change. Behavior change is a complex, long-term
process, progressing over stages and with a high chance of relapse [Klasnja et al.,
2011]. Prochaska and Velicer [1997] found that in the field of health sciences
a person has to maintain a behavior change for several years to truly stick.
Hence, to demonstrate that a system successfully fosters long-term behavior
change requires large-scale studies, ideally by performing a Randomized Control
Trial (RCT) [Chalmers et al., 1981] over multiple years, which is often not
feasible with early-stage systems. It is also almost impossible to control for

1.4 Challenges & Limitations 25

all the factors that could influence the outcomes of such a field study, and
many studies had difficulties to exactly show why the behavior changed [Klasnja
et al., 2011]. As a result, more recent studies that evaluated the impact of early
stage personal informatics (PI) systems, ran Efficacy Trials and studied specific
outcome measures to test whether the technology accomplishes what it intends
to do. In our work, we were careful to not over-claim the effect of our approaches,
e.g., PersonalAnalytics and FlowLight, by stating explicitly that we primarily
studied the effect on participants’ awareness, and that we observed short-term
behavior changes only, which might have been reversed after ending the study.

Recruiting Study Participants. Another challenge of our field studies was to
recruit study participants who were willing, able and allowed to install Personal-
Analytics on their computers and participate in studies over several days or weeks.
First, we were limited by companies that allowed us to study their employees and
collect data about their work, and their IT infrastructure, which sometimes made
it impossible to install third-party applications. In many cases, approaching the
management and allowing the review and analysis of PersonalAnalytics prior to
the study and applying code signing often reduced concerns. PersonalAnalytics
was initially only available on the Windows operating system, which further
limited the number of candidates for participation. Additionally, monitoring
parts of one’s work limits our pool of participants to people who are generally
open to and interested to learn more about and improve themselves, resulting in
a certain self-selection bias that we discuss in Chapter 1.3. Besides extensively
testing each version of PersonalAnalytics, we therefore spent a substantial amount
of time with the recruitment of participants. We approached them via personal
contacts, at developer events, and via social media initially, and later cultivated
connections with companies to run follow-up studies. We further observed that
providing participants with easy access to the collected data and presenting
visualizations that can provide insights into their work, were a strong motivator
for participation. In many cases, participants showed these insights to their
co-workers, who in turn approached us to participate in the study as well.

26 Chapter 1. Synopsis

Collecting Sensitive Data. Monitoring developers’ computer interaction at
their real-world work poses the risk of collecting sensitive data, which may
cause privacy concerns. While more fine-grained data, such as the application
content or the text developers type on their keyboards would provide valuable
information to even better model developers’ work and create more accurate
insights, it also might reveal details about the company’s products or developers’
work and personal life that they are not comfortable sharing. Reducing privacy
concerns, thus, required a careful reconciliation of capturing only a minimum set
of data that is required by the study, but also tracking as much as possible to
get a broad view and understanding of development work. We also made sure
to be very transparent and specific about what data is captured, and how it is
collected, processed, and analyzed. During the study, participants were always
in full control of their data, since they could investigate and modify the locally
stored data, disable data trackers they felt uncomfortable with, and review the
data before sharing it with us. Surprisingly, after gaining participants’ trust, they
were often willing to collect even more data, and regularly suggested additional
data sources we could implement trackers for.

1.5 Opportunities for Future Work

Our research opens several opportunities for future research, ranging from even
further extending our understanding of developers’ work and productivity, all
the way to addressing productivity of development teams. Chapters 2 to 8
also discuss further opportunities for future work that are more specific to the
respective research projects.

Interplay between Individual and Team Productivity. In our work, we fo-
cused on modeling and fostering work and productivity of individual developers.
One drawback of giving developers insights into only their own productivity is
that their behavior changes might have a negative impact on the overall team
productivity. As an example, a developer who blocks out interruptions at in-
opportune times to focus better could be blocking a co-worker who needs to ask
a question or clarify things. Hence, and since collaboration accounts for about

1.5 Opportunities for Future Work 27

one fourth of developers’ workdays (Section 2.5.1), a better understanding of
the interplay between individual and team productivity is important. We could
imagine integrating and aggregating the individual models to come up with team
models that provide insights into how the team coordinates and communicates
at work, and that foster productive work on a team level. For example, being
aware of co-workers’ most and least productive times in a workday could help
to schedule meetings during times where everybody is the least productive and
where interrupting one’s work for a meeting has the least negative effect.

Being more aware of the tasks each member of the team is currently working
on and how much progress they are making could also be useful for managers or
team leads to identify problems early, e.g., a developer who is blocked on a task
or uses communication tools inefficiently, and take appropriate action. However,
providing teams and managers with relevant and accurate measures is challenging,
as this could raise privacy concerns from sharing and aggregating the data, and as
a large and ever-growing amount of information and artifacts has to be processed.
One way to identify relevant measures of team collaboration is the Model of
Regulation by Arciniegas-Mendez et al. [2017], which helps to compare and
analyze collaboration practices and tools in software engineering. Furthermore,
previous work on team dashboards (e.g., [Brath and Peters, 2004; Jakobsen et al.,
2009; Treude et al., 2015]) suggests that aggregating and summarizing the data
helps to effectively solve the privacy and information overflow challenges.

More Holistic Picture on Developers’ Work and Productivity. Our studies
revealed several opportunities to further extend our understanding and gain
an even more holistic picture of developers’ work and productivity. At the
same time, our studies mostly focused on understanding developers’ work at
their computer. Yet, even the time developers spend away from the computer
might have a substantial impact on their productivity, especially since we found
that developers spend a significant part of their workday not actively using
their computer (up to 49%, Chapter 2.5.1), for example during discussions with
colleagues or when interacting with other devices such as their smartphone.
Therefore, there is potential to further examine and better support work away

28 Chapter 1. Synopsis

from the computer. One way to capture more about the time developers spend
away from the computer is through webcams (e.g., [McDuff et al., 2012; Samara
et al., 2017]), mobile activity trackers (e.g., [Consolvo et al., 2008b]), or biometric
sensors. In one of our own studies [Züger et al., 2018], we used biometric sensors,
such as the Fitbit, to capture data that is not directly linked to computer usage.

In multiple studies, participants also stated interest in better understanding
how non-work time and private aspects, such as their sleep, exercise or nutrition,
impact their productivity. Wearable or biometric sensors could make it possible
to capture this, and we might be able to answer devise better support that
improves the worklife and productivity of developers.

In addition, we could study the distinctness of the factors that influence
developers’ work and productivity. Since the identified factors impact developers
differently, future work could investigate how pronounced they are, by considering
additional variables, such as the company culture and development processes, or
developers’ gender (e.g., GenderMag [Burnett et al., 2016]) and personality (by
using standardized questionnaires from psychology such as BFI-2 [Soto and John,
2016] and UPPS [Whiteside and Lynam, 2001]). Murphy-Hill et al. [2019] recently
made a first step towards better understanding the distinctness of productivity
factors, by correlating a list of 48 productivity factors with developers’ self-rated
productivity at three different software companies. They found that the top
ten productivity factors are non-technical, and that technical factors, including
code reuse and the accuracy of incoming information, had the highest variance
between the three companies.

Digital Developer Assistant. A re-occurring feedback by participants in several
field studies was that they were interested in receiving personalized recommen-
dations with opportunities for self-improvement. In the future, we plan to study
if we can leverage the discovered work habit goals and strategies (Chapter 7),
and compare them with developers’ current work habits, to identify personalized
recommendations for self-improvements. For example, depending on whether a
developer is a morning or evening person (see [Taillard et al., 1999]), a personal
recommendation could suggest to work on the most difficult tasks during times

1.5 Opportunities for Future Work 29

of the day when the developer is usually most productive and can focus best.
Another example is to leverage our task detection model (Chapter 5) to identify
and build up task contexts, consisting of work artifacts (e.g., websites or files)
and applications the developer used for the task. Upon returning to a suspended
or interrupted task, the system could recommend the task context as cues, which
previous work has shown to considerably reduce resumption lag and increase
productivity [Altmann and Trafton, 2004; Bailey et al., 2001; Rule et al., 2015].

To increase the chance of positive behavior change, these personalized recom-
mendations would also need to be tailored to developers’ preferences, for example
by altering the timing and content of their interactions with the user. Recent
work has suggested that conversational interfaces, such as bots and voice assis-
tants, can successfully adapt to the user’s needs by prompting for feedback and
integrating into existing work flows [Bradley et al., 2018; Kocielnik et al., 2018;
Storey and Zagalsky, 2016; Williams et al., 2018]. We can imagine that such a
‘Digital Developer Assistant’ could non-intrusively collect data on the developer’s
current context and work habits, identify personalized recommendations, and
then either suggest them through the conversational interface (e.g., recommend
to take a work-break when the developer is stuck on a task), or even take certain
actions automatically depending on the developer’s preferences (e.g., to disable
notifications at times of low interruptibility).

Generalization to other Knowledge Workers. Our work focused on under-
standing and fostering productive work of software developers. We can imagine
that many of the findings that we gained and models that we built can be
generalized and transferred to the broader range of knowledge workers. With the
FlowLight, we made a first attempt to explore how our models, in this case on
developers’ availability for interruptions, generalize to other knowledge workers.
The results suggested great potential in targeting the measures and features
towards a specific knowledge worker type. While many of the measures and
features we included in our models were specific to software development (e.g.,
debugging time, code reviews) future work could investigate useful features for
other knowledge work areas, such as architects, accountants, or other engineers.

30 Chapter 1. Synopsis

1.6 Related Work

Work related to our research can be broadly grouped into research on understand-
ing and quantifying developers’ work and productivity, background information
on behavior change and goal-setting, and the three persuasive strategies, self-
monitoring, self-reflection and external indicators. We provide a comprehensive
summary of the related work sections from Chapters 2 to 8 here, and removed
them in the respective chapters to reduce repetition.

1.6.1 Software Developer Workdays and Work Habits

Recent work on how developers spend their time at work has focused on specific
activities performed in the IDE, the execution of test cases, usage of refac-
toring features, and time spent on understanding code versus actually editing
code [Amann et al., 2016; Beller et al., 2017; LaToza et al., 2006; Minelli et al.,
2015]. Other work has investigated developer workdays more holistically, exam-
ining how they spend their time on different activities overall, and by employing
different methods: observations and interviews [Gonçalves et al., 2011; Meyer
et al., 2014; Perry et al., 1994b; Singer et al., 2010; Xia et al., 2017], self-reporting
diaries [Perry et al., 1994b], and computer usage tracking [Astromskis et al., 2017].
These studies commonly found that developers spend surprisingly little time
working on their main coding tasks, and that the times reported on development
and other activities varies greatly. For example, Perry et al. [1994b] found that
developers spend about 50% of their time writing code, while Gonçalves et al.
[2011] found that it is only about 9%, and the rest is spent with collaboration
(45%) and information seeking (32%). Recently, Astromskis et al. [2017] reported
the highest fraction of time spent coding (61%) compared to other activities.
Reasons for these varying amounts of time spent coding could be differences in
how teams organize their work, the processes they follow, and the complexity of
the software they develop. Other explanations could be the shift to agile devel-
opment, which might be why more recent studies generally report higher times
spent with collaborative activities, or that the timing of the studies captured an
atypical working phase, e.g., when developers were extraordinarily busy before a

1.6 Related Work 31

deadline or wrapping up a project.
In our work, we further explored developers’ workdays by performing sev-

eral studies, including running a computer interaction monitoring tool at the
workplace for several weeks, and using a large-scale survey. Our work confirmed
some of these prior findings, such as the little time developers spend on actual
coding related activities, and the many collaborative activities they perform. At
the same time, it provided a more holistic and more complete picture of how
developers’ workdays are structured across many companies, and with detailed
insights into how they spend their work time on the computer (also outside the
IDE), the activities they pursue on typical/atypical and good/bad workdays,
and the tasks they work on.

1.6.2 Fragmentation of Development Work

One aspect of developers’ work that has drawn much attention is the high
fragmentation of their work, which, for instance, is caused by planned meet-
ings, unexpected requests from co-workers, unplanned or blocking tasks, or even
just background noise in the office. A large body of research has investigated
interruptions—a major reason for fragmentation—in great detail, e.g., the length
and types of interruptions, the frequency of self-interruptions versus externally ini-
tiated ones, resumption strategies, and their impact on work performance [Cutrell
et al., 2000; Czerwinski et al., 2004; Iqbal and Horvitz, 2007; Parnin and DeLine,
2010a; Perlow, 1999; Van Solingen et al., 1998]. For example, Mark et al. [2005]
found that 57% of all tasks are interrupted and, thus, are often fragmented into
small work sessions, and Chong and Siino [2006] found that most interruptions,
including self-initiated ones, lasted around 2 to 3 minutes. While many of these
interruptions can be beneficial, for instance to resolve problems quickly [Isaacs
et al., 1997], they are especially costly when they happen at an in-opportune
moment, such as when the developer is very focused or engaged in a difficult task.
Interruptions can further lead to a higher error rate, slow task resumption, higher
anxiety, and an overall lower work performance [Bailey et al., 2001; Czerwinski
et al., 2000, 2004; Mark et al., 2008a; Parnin and Rugaber, 2011]. Resuming an
interrupted task can be challenging, as Parnin and Rugaber [2011] found that

32 Chapter 1. Synopsis

only one out of ten interrupted programming tasks is being continued within a
minute after the interruption, and resuming an interruption takes developers on
average about 15 minutes. Emails and meetings are two further major sources of
distraction and frustration that fragment developers’ work. Emails were shown to
extend workdays [Mazmanian, 2013] and add stress, especially when developers
receive high amounts of emails [Dabbish and Kraut, 2006] or spend a lot of
time on them [Barley et al., 2011]. Meetings were also related to a decrease in
productivity, especially when they have no clear objective, are not well prepared,
or attendees are getting side-tracked [Meyer et al., 2014; Niemantsverdriet and
Erickson, 2017].

Supporting previous research, we found that one main reason for work frag-
mentation is that developers switch frequently between activities and tasks. On
average, they spend less than two minutes in an activity (except for meetings),
and spend about 13 minutes on a task, before switching to another. Our studies
further allowed us to uncover nuances and sort out misconceptions about how
various factors impact developers’ fragmentation of work and productivity dif-
ferently. For example, when we looked more closely into when developers are
most vocal about meetings and interruptions being one of the main detriments
to productive work, we found that their impact on productivity depends on the
project phase: during non-development phases, they are better accepted and
more productive. Finally, we presented an approach, FlowLight, to reduce costly
external interruptions at the workplace, and thereby reducing work fragmentation
and increasing productivity at work.

1.6.3 Software Developer Productivity

Starting in the 1970s, researchers and practitioners explored multiple ways to
quantify developer productivity. Most of these productivity measures calculate
the rate of output per unit of input, with the output being based on a single
artifact or deliverable and input being time-based. Examples are the number
of lines of source code (SLOC) written per day [Devanbu et al., 1996], the
number of function points per month [Albrecht, 1979], or the tasks completed
per month [Zhou and Mockus, 2010]. Most of these measures only capture a

1.6 Related Work 33

small part of a developer’s work, also impeding the provision of a more holistic
picture of developers’ work and productivity [Treude et al., 2015]. A more
complete list of approaches to quantify productivity using technical factors can
be found in our previous work [Meyer et al., 2014]. Researchers have also looked
more broadly into the factors affecting the productivity of software developers.
Wagner and Ruhe [2008] categorized these factors into technical, such as the
programming language [Albrecht, 1979], software tools [Chatzoglou and Macaulay,
1997], software size and complexity [Boehm et al., 2000; Brooks Jr, 1995] and
product quality [DeMarco and Lister, 2013]; and social factors, such as team
and turnover [Blackburn et al., 1996; Boehm et al., 2000; Melo et al., 2011;
Murphy-Hill et al., 2019], experience and skills [Boehm et al., 2000; Chatzoglou
and Macaulay, 1997], and workplace environment [DeMarco and Lister, 2013].

These studies on productivity are generally separate from studies on devel-
opers’ workdays, and do not consider the individual differences in development
work that might affect productivity as well [Humphrey, 1996; Johnson et al.,
2003; Meyer et al., 2014; Vasilescu et al., 2016b]. Thus, we studied developers’
work practices and their relationship to developers’ perceptions of productivity
more holistically, while also examining individual differences and commonalities,
and how perceived productivity changes over the day.

1.6.4 Characteristics and Habits of Successful Developers

Generally, most software developers are interested in optimizing their own habits
and behaviors to improve their productivity and well-being at work [Li et al.,
2015; Sharp et al., 2009]. However, we have not been able to find prior work that
looked into the goals developers set to improve their work habits and productivity.
Previous work also suggests that it is often the managers who set goals for their
developers, even though developers would like to have more involvement with
setting their own goals [Couger et al., 1990; Enns et al., 2006; Kalliamvakou
et al., 2019]. Goals that managers set include usually either concrete features
or development tasks, such as shipping a feature on time with minimal bugs;
or growth goals, such as increasing expertise, improving team-work or working
more independently.

34 Chapter 1. Synopsis

A related area of research looked into characteristics and work habits of
successful developers, some of which developers might consider relevant and
important to pursue as goals. Amongst other characteristics, successful developers
often share similar attributes, such as striving for productivity and efficiency,
being self-aware, asking for and offering help and feedback, constantly learning and
self-improving, doing data-driven decisions, and setting challenging goals [Baltes
and Diehl, 2018; Couger et al., 1990; Graziotin et al., 2015b; Li et al., 2015;
Sharp et al., 2009]. Successful developers also manage to find a good balance
between focused work and helping others [Baltes and Diehl, 2018; Li et al., 2015].

In our work, we aim to better understand what productive work habits are,
as well as what goals and strategies developers employ, to motivate productive
behavior changes that increase productivity and well-being.

1.6.5 Fostering Behavior Change with Goal-Setting

Behavior change is a complex and long-term process [Zimmerman, 2006] that was
modeled and formalized in multiple theories, such as the Transtheoretical Model
of behavior change (TTM) by Prochaska and Velicer [1997], and more specifically
to personal informatics, the Stage-Based Model of Behavior Change by Li et al.
[2010] and the Lived Informatics Model by Epstein et al. [2015]. TTM models
behavior change as a sequence of stages which the person advances through until
a behavior change happens and can be maintained. Awareness increase, also
referred to as consciousness, is one of the processes that lets people advance
between stages. In particular, it helps people to advance from being unaware of
the problem behavior (TTM’s precontemplation stage) to acknowledging that
the behavior is a problem, and the intention to improve it (contemplation stage).
There are two ways to identify a problem behavior, either by increasing people’s
self-awareness or external awareness. Internal, or self-awareness can be increased
through self-monitoring or self-reflection, and was shown to be valuable to identify
opportunities for positive behavior change, and usually allows people to also
measure their progress towards their goals [Consolvo et al., 2009; Kersten-van
Dijk et al., 2017]. External awareness can be increased through social incentives,
competitions or an external indicator, and was shown to motivate people to not

1.6 Related Work 35

only reach, but also maintain their goals over prolonged periods of time [Edelson
et al., 2011; Fogg, 2003; Fritz et al., 2014; Lin et al., 2006; Rooksby et al.,
2014]. The three concepts to increase awareness that we applied in our work,
self-monitoring, self-reflection and external indicators, are discussed in detail in
the following three sections.

Once people are ready to take action and change their behavior (TTM’s
preparation stage), they define the target behavior or outcome as a goal that
they work towards (action stage) and maintain once it is reached (maintenance
stage). Latham and Locke, who pioneered goal-setting research, identified key
principles that improve chances of successful goal-achievement: defining clear and
challenging goals, committing and actively working towards them, and measuring
progress or getting feedback on goal achievement [Locke and Latham, 1990,
2002] These principles are closely related to Doran’s SMART goals approach,
describing that goals must be specific, measurable, achievable, relevant and
time-bound [Doran, 1981].

1.6.6 Self-Monitoring in the Workplace

An increasing amount of people are using applications and wearable devices to
track certain aspects of their lives, in particular related to physical activity [Con-
solvo et al., 2008b; Lin et al., 2006], emotional states [McDuff et al., 2012],
stress [Mark et al., 2016a,b], and sleep [Kay et al., 2012]. This self-monitoring
leads to increased self-awareness, which helps to realize bad habits in behav-
ior [Bentley et al., 2013; Choe et al., 2014; Lin et al., 2006] and helps to set
personal goals that often promote deliberate or unconscious behavior change
(e.g., [Calvo and Peters, 2014; Fogg, 2003; Hollis et al., 2015; Munson and Con-
solvo, 2012]). For example, physical activity trackers, such as the Fitbit, motivate
users to pursue a more active and healthier life-style [Fritz et al., 2014; Lin et al.,
2006]. In addition to work on quantifying many aspects of a person’s life, there
is a growing body of research that focuses on quantifying work and promoting
more productive work habits with automated self-monitoring techniques. Many
of these approaches focus on the time spent in computer applications [Kim
et al., 2016; Manictime, 2019; RescueTime, 2019; Slife, 2019; Whittaker et al.,

36 Chapter 1. Synopsis

2016], work rhythms [Begole et al., 2002], or tasks worked on [Dragunov et al.,
2005]. Some approaches specifically target the activities of software developers in
IDEs, e.g., Codealike [2019], Wakatime [2019] and WatchDog [Beller et al., 2017].
Few of these tools have been evaluated (e.g., [Huang et al., 2016; Kim et al.,
2016; Rooksby et al., 2016; Whittaker et al., 2016]), limiting our knowledge of
the overall user value of these tools and if they can affect developers’ behavior.
Previous research also discovered that users rarely engage with the captured
data, resulting in a lower awareness and reducing chances of a positive behavior
change when using a self-monitoring tool [Collins et al., 2014; Huang et al., 2016;
Kim et al., 2016].

In our work, we investigated how we can map the success of self-monitoring
systems from the physical activity and health domain to the workplace, and learn
more about developers’ expectations of and experience with such tools. Specifi-
cally, our objectives were to learn how developers use a workplace self-monitoring
tool, PersonalAnalytics, in practice, and study its impact on developers’ self-
awareness and behavior.

1.6.7 Self-Reflection in the Workplace

In contrast to self-monitoring, where users continuously track certain behaviors,
self-reflection describes the process of purposefully reviewing and thinking about
one’s behaviors. Prior research on self-reflection has mostly focused on under-
standing how particular approaches, such as just-in-time interventions or mobile
apps, support goal-monitoring and -achievement, by providing participants with
pre-determined goals that they could further personalize and adapt (e.g., defin-
ing a specific exercise plan). This research mostly focuses on non-work related
areas of life, such as health [Gasser et al., 2006; Monkaresi et al., 2013], food
intake [Cordeiro et al., 2015], students’ learning behavior [Johnson and White,
1971; Morisano et al., 2010; Travers et al., 2015], and physical activity [Her-
rmanny et al., 2016; Klasnja et al., 2009; Munson and Consolvo, 2012]. However,
there are cases, including sleep and work, where pre-determined goals are not
suitable for everyone, or they would have varying impacts on different people.
In these cases, researchers have looked more specifically into how purposeful

1.6 Related Work 37

self-reflection aids individuals to identify and refine personal growth goals that
are relevant and important to them. One example is Lee et al.’s work on how
to design a self-experimentation approach that allows individuals to identify
behavior change goals for improving sleep quality [Lee et al., 2014, 2015, 2017].
The researchers provided participants with an open-ended journal to self-reflect
on their sleep, a structured approach to define self-improvement goals, and
just-in-time interventions to remind them about their goals. They found that the
structured self-reflection allows users to self-experiment with goals and identify
better behavior change strategies.

There is also research that investigated the value of workplace self-reflection
on task completion [Amabile and Kramer, 2011; Claessens et al., 2010], time
management [Pammer et al., 2015; Rooksby et al., 2016; Whittaker et al., 2016],
and detachment from work [Kocielnik et al., 2018; Williams et al., 2018]. The
research has shown that successful self-reflection approaches are often structured,
since they guide users’ reflection with a predefined set of questions [Kersten-van
Dijk et al., 2017; Schwarz and Oyserman, 2001].

In software development, Humphrey has taken a first step towards workplace
self-reflection for developers with the Personal Software Process (PSP). PSP
focuses on a set of basic metrics that developers reflect on (e.g., time, size,
quality, schedule data), to better understand and improve their performance,
quality, time estimations and skills [Humphrey, 1996]. Baltes et al. recently
found that many developers already self-monitor their work, by using tools such
as RescueTime [2019], Codealike [2019] or Wakatime [2019], but only very few
actively and regularly reflect on work (3 out of 204 survey participants) [Baltes
and Diehl, 2018].

Therefore, we were interested in learning how open developers are towards
actively self-reflecting on their work on a daily basis during several weeks. We were
further interested in learning how self-reflection and goal-setting can be combined
to identify personal work habit goals and strategies that foster productive behavior
change for developers.

38 Chapter 1. Synopsis

1.6.8 External Indicators in the Workplace

Since interruptions have been shown to be one of the biggest impediments to
developers’ productive work, we investigated how we can quantify interruptibility
using computer interaction data, and how to display interruptibility using an
external indicator. Several approaches have been proposed to increase awareness
about interruptions and reduce their costs, ranging from simple manual strategies
to more advanced automated systems.

One strategy is to postpone interruptions at moments when the interruptee
is in the middle of a task to naturally occurring breakpoints—aka. defer-to-
breakpoint strategy. This idea is based on studies suggesting that the cognitive
load drops at task boundaries, and that interruptions at lower cognitive load are
less harmful [Bailey and Iqbal, 2008; Borst et al., 2015]. While several approaches
that implement this strategy (e.g., Ho and Intille [2005]; Iqbal and Bailey [2008])
are successful at mitigating interruptions from the computer and mobile devices,
they do not address the frequent and costly in-person interruptions in workplaces.

A second strategy that builds upon the idea of deferring interruptions to
more opportune moments is to continuously indicate a person’s interruptibility
to potential interrupters, and thereby implicitly help negotiating the timing
of the interruption. While knowledge workers were shown to already employ
simple manual indicators, such as headphones or closing the office door [Sykes,
2011], researchers have also developed approaches that indicate interruptibility
based on automated measurements. Most prior work focused on contact-list-style
tools, such as ConExus [Tang et al., 2001] and Lilsys [Begole et al., 2004] that
are installed on the user’s computer and vary mostly in which data they use
to quantify interruptibility. MyTeam, an approach by Lai et al. [2003], uses
data on presence, network connection and user input to indicate availability in
a contact list. Overall, study results for these computer-based interruptibility
indicators suggest that they increase the awareness about the disruptiveness of
interruptions, but do not reduce in-person interruptions.

Only few researchers examined external indicators so far, the most similar to
the FlowLight being work by Bjelica et al. [2011]. In their work, they developed
an automated indicator visualizing interruptibility through ambient lighting

1.7 Summary of Contributions 39

effects based on detected activities (e.g., low interruptibility during meetings).
In our work, we developed an automated interruptibility measure that is based
on computer interaction data and combined it with a physical indicator in the
form of a traffic-light like LED that we placed on participants’ desks. Thereby,
our approach is more direct and prominent than subtle ambient lighting. We
conducted a large-scale and long-term user study to investigate the impact and
value of FlowLight to foster productive work by reducing intrusive in-person
interruptions.

1.7 Summary of Contributions

The objective of this research was to foster software developer productivity.
A first step towards the objective was to gain a better understanding of de-
velopers’ work and productivity from a bottom-up perspective (RQ1). The
findings from the performed studies informed the development of several models
describing developers’ work and productivity, which we integrated into tool
support. We evaluated these models through various long-term field studies with
professional software developers, who used our tools in the field and reported
self-improvements in work habits, experiencing fewer costly interruptions, and
increased productivity, amongst other benefits. These results support our Hy-
pothesis and provide evidence that it is possible to apply models that are based
on computer interaction at the workplace, to foster productive work through
the provision of self-monitoring (RQ2a), reflective goal-setting (RQ2b), and an
external indicator (RQ3).

The contributions of this work are as follows:

• we present empirical findings from a series of studies on software developers’
workdays and the factors that influence them, activities and tasks that
fragment development work, developers’ perceptions of productivity, and
the relationship between activities at work and productivity;

• we present PersonalAnalytics, a system to capture developers’ work and
productivity in the field, and to support self-monitoring. Our multi-week

40 Chapter 1. Synopsis

field study showed that PersonalAnalytics can foster productive behavior
changes, and revealed design recommendations for self-monitoring systems;

• we present the results of a field-study in which our reflective goal-setting
approach allowed developers to identify individual work habit goals, and
motivated productive self-improvements at work;

• we present and evaluate a model based on computer interaction data to
automatically detect developers’ task switches and types, and show that
we can achieve high accuracy and only a short delay;

• and, we present the FlowLight, an approach to sense and externally indicate
interruptibility based on computer interaction. Our large-scale field study
shows that the FlowLight successfully increases external awareness about
interruption cost and reduces interruptions at in-opportune moments.

Finally, we open-sourced PersonalAnalytics for reproducibility and future
research, and licensed the FlowLight to be released as a commercial product.

1.8 Thesis Roadmap

The remainder of this thesis consists of 7 chapters, each based on a publication
published at an internationally renowned, peer-reviewed conference or journal.
An overview of all publications, including publications that were outside of the
scope of the thesis, is given in Figure 1.5.

Chapter 2 addresses RQ1a, RQ1c and RQ1d, and investigates the activities
developers pursue during their workdays, how they fragment their work, and
their relationship with perceived productivity. My contributions to this chapter
are the design and execution of the field study, participant recruitment, tool
development, partial data analysis, and paper writing.

Chapter 3 addresses RQ1d, explores differences and commonalities in devel-
opers’ productivity perceptions, and describes groups of developers with similar
perceptions as developer personas. My contributions to this chapter comprise the

1.8 Thesis Roadmap 41

design and execution of the study, participant recruitment, partial data analysis,
and paper writing.

Chapter 4 addresses RQ1a, and extends our understanding of developer
workdays, in particular the factors that influence what makes workdays good
and typical, workday types, and how collaboration impacts these days. My
contributions to this chapter are the analysis of the collected data, and paper
writing.

Chapter 5 addresses RQ1b, and allows us to automatically detect devel-
opers’ task switches and task types based on their computer interaction. My
contributions in this chapter are the study design and execution, participant
recruitment, tool development, partial data analysis, and paper writing.

Chapter 6 addresses RQ2a and presents a workplace self-monitoring ap-
proach, PersonalAnalytics, that increases developers’ awareness about work and
productivity through retrospection and experience sampling. My contributions
to this chapter comprise the design and execution of the field study, participant
recruitment, self-monitoring tool development, data analysis, and paper writing.

Chapter 7 addresses RQ2b and provides a framework for reflective goal-
setting that supports the identification of work habit goals and actionable
strategies for productive self-improvements. My contributions to this chapter
are the design and execution of the field study, participant recruitment, data
analysis, and paper writing.

Chapter 8 addresses RQ3, introduces an approach to automatically measure
the interruptibility based on computer interaction, and presents the FlowLight to
increase external awareness about co-workers’ interruptibility using an external
indicator. The approach reduces costly interruptions at inopportune moments,
and thus, improves productivity. My contributions to this chapter comprise
involvement in all main parts of this large team project, including the tool
development, execution of the field study, data analysis, and paper writing.

42 Chapter 1. Synopsis

Figure 1.5: Thesis roadmap.

The Work Life of Developers: Activities, Switches and Perceived Productivity

André N. Meyer, Gail C. Murphy, Thomas Zimmermann, Laura Barton, Thomas Fritz

IEEE Transactions on Software Engineering

Characterizing Software Developers by Perceptions of Productivity

André N. Meyer, Thomas Zimmermann, Thomas Fritz

International Symposium on Empirical Software Engineering and Measurement 2017

Today was a Good Day: The Daily Life of Software Developers

André N. Meyer, Earl T. Barr, Christian Bird, Thomas Zimmermann

IEEE Transactions on Software Engineering

Detecting Developers’ Task Switches and Types

André N. Meyer, Manuela Züger, Christopher Satterfield, Katja Kevic,
Gail C. Murphy, Thomas Zimmermann, Thomas Fritz

In submission to an international journal.

Design Recommendations for Self-Monitoring in the Workplace:
Studies in Software Development

André N. Meyer, Gail C. Murphy, Thomas Zimmermann, Thomas Fritz

Proceedings of the 21th ACM Conference on Computer-Supported
Cooperative Work and Social Computing

Enabling Good Work Habits in Software Developers through Reflective Goal-Setting

André N. Meyer, Gail C. Murphy, Thomas Zimmermann, Thomas Fritz

IEEE Transactions on Software Engineering

Reducing Interruptions at Work: A Large-Scale Field Study of FlowLight

Manuela Züger, Christopher Corley, André N. Meyer, Boyang Li, Thomas Fritz,
David Shepherd, Vinay Augustine, Patrick Francis, Nicholas Kraft and Will Snipes

Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems

Fostering Software Developers’ Productivity at Work
through Self-Monitoring and Goal-Setting

André N. Meyer

Doctoral Symposium at the 2018 International Conference on Software Engineering

Sensing Interruptibility in the Office: A Field Study on the Use of
Biometric and Computer Interaction Sensors

Manuela Züger, Sebastian Müller, André N. Meyer, Thomas Fritz

Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems

RQ1

RQ2

RQ3

Further
publications
(not part of
this thesis)

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

2
The Work Life of Developers:

Activities, Switches and
Perceived Productivity

André N. Meyer, Laura E. Barton, Gail C. Murphy,
Thomas Zimmermann, Thomas Fritz

Published in the 2017 IEEE Transactions on Software Engineering Journal
Contribution: Study design and execution, participant recruitment, tool
development, data collection, partial data analysis, and paper writing

Abstract
Many software development organizations strive to enhance the productivity of
their developers. All too often, efforts aimed at improving developer productivity
are undertaken without knowledge about how developers spend their time at
work and how it influences their own perception of productivity. To fill in

44
Chapter 2. The Work Life of Developers:

Activities, Switches and Perceived Productivity

this gap, we deployed a monitoring application at 20 computers of professional
software developers from four companies for an average of 11 full workdays in
situ. Corroborating earlier findings, we found that developers spend their time
on a wide variety of activities and switch regularly between them, resulting in
highly fragmented work. Our findings extend beyond existing research in that
we correlate developers’ work habits with perceived productivity and also show
productivity is a personal matter. Although productivity is personal, developers
can be roughly grouped into morning, low-at-lunch and afternoon people. A
stepwise linear regression per participant revealed that more user input is most
often associated with a positive, and emails, planned meetings and work unrelated
websites with a negative perception of productivity. We discuss opportunities
of our findings, the potential to predict high and low productivity and suggest
design approaches to create better tool support for planning developers’ workdays
and improving their personal productivity.

2.1 Introduction

A software developer’s work day might be influenced by a wide variety of factors
such as the tasks being performed, meetings, interruptions from co-workers, the
infrastructure or the office environment (e.g., [DeMarco and Lister, 1985; Perry
et al., 1994b; Singer et al., 2010]). Some of these factors result in activity and
context switches that can cause fragmented work and that can have a negative
impact on the developer’s perceived productivity, progress on tasks, and quality
of output (e.g., [Boehm, 1987; Meyer et al., 2014]). As a result, researchers
and practitioners have both had a long interest in better understanding how
developers work and how their work could be quantified to optimize productivity
and efficiency.

Researchers have investigated work practices and work fragmentation in detail
from various perspectives, specifically the effect of interruptions on fragmentation
(e.g., [Czerwinski et al., 2004; Iqbal and Horvitz, 2007; Parnin and Rugaber,
2011; Van Solingen et al., 1998]) and how developers organize their work in
terms of tasks and working spheres (e.g., [González and Mark, 2004; Meyer et al.,

2.1 Introduction 45

2014]). Using both a diary and an observational study format to understand
software developer work practices, Perry et al. [1994b] gained several insights,
including that most time was spent coding, and that there was a substantial
amount of unplanned interaction with colleagues. Singer et al. [2010], using
several study methods including tool usage statistics, found that developers
spent most of their time reading documentation and that search tools were the
most heavily used. Since the time these earlier studies on developers’ work
practices were conducted, empirical studies of software development have focused
more on particular aspects of a developer’s work day. For example, Ko et al.
[2007] observed software developers to determine what information was needed
to perform their work and how they found that information. Other studies have
focused on how developers spend their time inside the Integrated Development
Environment (IDE) (e.g., [Amann et al., 2016; Minelli et al., 2015]). The industry
has also seen an increasing trend with self-monitoring tools to track activity and
work habits, with applications such as RescueTime [2019] or Codealike [2019].

Starting in the 1970s, researchers have also been exploring various different
ways to quantify a developer’s productivity. Most of these identified productivity
measures capture a small part or single aspect of a developer’s work, such as
the number of tasks per month [Zhou and Mockus, 2010], the number of lines of
code written [Blackburn et al., 1996], or the resolution time for a modification
request [Cataldo et al., 2008]. However, these studies on productivity are
generally separate from studies of work fragmentation and of how developers
work. Furthermore, these measures do not take into account the individual
differences in development work that might affect productivity as pointed out
by previous work [Humphrey, 1996; Johnson et al., 2003; Meyer et al., 2014;
Vasilescu et al., 2016b].

In this paper, we study developers’ work practices and the relationship to the
developers’ perceptions of productivity more holistically, while also examining
individual differences. In particular, our study seeks to answer the following
research questions:

46
Chapter 2. The Work Life of Developers:

Activities, Switches and Perceived Productivity

RQ1: What does a developer’s work day look like?

RQ2: How fragmented is a developer’s work?

RQ3: Are there observable trends in how developers perceive
their productivity?

RQ4: What is the relationship between developers’ activity and
perceived productivity at work?

To investigate these questions, we designed and conducted a study involving
the monitoring of 20 developers’ interactions with their computer over a two week
time period. From this monitoring, we were able to gather logs describing how a
developer was interacting with the computer (i.e., through the keyboard or the
mouse) and in what applications the interaction was occurring. Our monitoring
also gathered self-reports from the developers about their current task(s) at 60
minutes time intervals, and a self-rating of their perceived productivity. The
20 developers from whom we gathered data worked for 4 different companies
of varying size, with varying projects, project stages and customers, providing
more diversity in our results than has been available in previous holistic studies.
This approach also allows us to see whether earlier research findings, such as how
much time developers actually spend coding [Perry et al., 1994b] and typical
coding related activities [LaToza et al., 2006], hold in contemporary development,
and to enhance emerging theories about fragmented knowledge work [González
and Mark, 2004].

Based on our analysis of the gathered data, we observed that productivity is a
highly personal matter and perceptions of what is considered to be productive are
different across developers. No one model we built relating actions and activity to
perceived productivity was able to explain a large number of developers. However,
we did find that many developers consider email, planned meetings and work
unrelated browsing as less productive activities, and usually perceive themselves
as more productive when they have a higher user input rate as measured by
mouse clicks and keystrokes. Further, developers’ work is highly fragmented, as
developers are spending only very short amounts of time (0.3 to 2 minutes) in

2.1 Introduction 47

one activity before switching to another one. Even though we observed that some
aspects of a developer’s work habits are highly individual we found consistent
trends across multiple people. For example, some developers parcel their work
out over a longer time span, while others choose to contain their work time and
stay off of the computer during the evening. Some seem to be morning people,
with higher productivity ratings in the morning hours, others are afternoon
people. Finally, we discuss implications and opportunities of our findings to help
improve and predict developer productivity.

This paper provides the following contributions:

• it provides insights into software developers’ work habits, including the
frequency and duration of performing particularly activities and application
use;

• it provides data about the rhythms in developers’ perceived productivity,
which opens opportunities for retrospective tools and recommender systems
for when developers might best perform particular activities;

• it demonstrates that productivity patterns for individuals are consistent,
but vary when comparing across groups of software developers; and,

• it shows that perceived productivity and the factors that influence it, such
as emails, meetings, or activity switches, are highly individual.

Section 2.2 presents relevant related work on developers’ work practices,
the high fragmentation of their work, approaches on quantifying development
activities and on measuring productivity. Sections 2.3 and 2.4 describe the study
method employed and the data collected. Section 2.5 presents the results of our
study in terms of what a developer does, the fragmentation of a developers’ work,
the rhythms of a developer’s perceived productivity and which activities and
actions a developer perceives as productive. Section 2.6 outlines the threats to
our results. Section 2.7 discusses implications and opportunities of the findings
of our study for future tool support and presents results of a preliminary analysis
on predicting two levels of productivity. Section 2.8 summarizes the paper.

48
Chapter 2. The Work Life of Developers:

Activities, Switches and Perceived Productivity

2.2 Related Work

Related work can broadly be classified into four categories: developers’ work
practices, work fragmentation, the quantification of development activities and
productivity. To avoid repetitions in this thesis, we present and summarize the
related work in Section 1.6 of the synopsis.

2.3 Study Method

To answer our research questions, we conducted an in situ study at four interna-
tional software development companies of varying size. We collected data from 24
professional software developers using a combination of experience sampling (di-
ary study) and a background monitoring application. The monitoring application
logged a wide range of digital activities over several weeks with detailed precision.
Experience sampling was used to collect participants’ perceptions of productivity,
as well as self-reported tasks and activities they performed throughout their work
day.

2.3.1 Participants

We used personal contacts, emails and sometimes a short presentation at the
company to recruit participants. Of the total 24 participants, we discarded the
data of 4 participants as they did not respond to a sufficient amount of experience
samples. Two participants responded to less than 5 experience samples over the
course of the study, as they thought it was too intrusive for their work. The other
two participants responded to very few samples since they were either working
on a different machine as the one initially indicated or did not use their machine
for more than an hour per work day.

Of the remaining 20 participants, 1 was female and 19 were male. All
participants are professional software developers, with varying roles between
individual contributors1 and lead. At the time of the study, our participants

1We defined an individual contributor as an individual who does not manage other employees.

2.3 Study Method 49

had an average of 14.2 years (±9.6, ranging from 0.5 to 40 years) of professional
software development experience and an average of 18.9 years (± 9.2, ranging from
1.5 to 40 years) of total software development experience, including education.
An overview of our participants can be found in Table 2.1.

To capture various kinds of software development practices, we sampled
developers from 4 different companies of varying size, in different locations and
project stages, using different kinds of programming languages, and with different
kinds of products and customers. Companies resided either in the USA (company
A), Canada (company B and C) or Switzerland (company D). The company sizes
varied from less than 10 developers (company D), to a few hundred (company
C), and thousands of developers (company A and B). The project stages varied
from working on initial releases (company D), over working on a next big release
(company D and B) to being in a project maintenance cycle (company A and C).
The developers in company A were mainly programming in C++ and C#, in
company B in Java and C#, in company C in JavaScript, C# and SQL, and in
company D in JavaScript, Java, C# and SQL. The products developed by the
companies range from developer support tools, to power monitoring and robotics
software, all the way to cloud-solutions for B2B and B2C customers.

2.3.2 Procedure and Monitoring Application

The monitoring application was developed and tested to run on the Windows 7,
8 and 10 operating system. To make sure it works properly, the collected data
is accurate and to optimize the performance, we deployed the tool in multiple
steps. After an initial phase of extended testing on 3 researchers’ machines, we
deployed it to three developers in company B and one developer in company C
over several weeks, to ensure correct functionality in many different computer
set-ups and use cases and to ensure the tool is stable and reliable enough for
daily use.

We then installed the monitoring application on the first day of the study
after a presentation that included an introduction to the study and details on the
data that was being collected with the monitoring application. Participants were
assured of the anonymity and privacy of their data and were shown the location

50
Chapter 2. The Work Life of Developers:

Activities, Switches and Perceived Productivity

Table 2.1: Study Participants (IC: Individual Contributor, Distribution is on
a 7-point Likert scale: left = “not at all productive” (1), right = “very much
productive” (7)).

ID Comp. Role # Distribution

S1 C IC 15 10 8 45

S2 C IC 25 18 8 101

S3 C IC/Lead 23 16 9 62

S4 C IC 20 15 8 94

S5 C IC 19 15 8 40

S6 C IC/Lead 20 20 8 62

S7 C IC 16 11 15 80

S8 C IC 40 40 11 73

S9 C IC 29 29 12 89

S10 C IC 22.5 19 12 92

S11 B Lead 14 6 9 51

S12 B IC 1.5 0.5 7 40

S13 D Lead 23 12 10 76

S14 D IC 8 4 9 88

S15 D IC 5 1 9 71

S16 A IC 20 15 11 42

S17 A IC 19 5 17 62

S18 A Lead 17 17 16 53

S19 A IC/Lead 33 23 20 100

S20 A IC 8 7 13 30

18.9 14.2 11.0 67.6

Participant Total Dev.

Experien.

Work

Days

Perc. Prod. Ratings Prof. Dev.

Experien.

 Average

where the logged data was stored on their computer to give them full control
over their data. Participants had the opportunity to censor parts of the collected
data, which was reportedly done a few times, e.g., when participants were using
their private e-banking. The monitoring application logged the currently active
process and window title every 10 seconds, or an ‘idle’ entry in case there was
no user input for longer than 10 seconds. In addition an event for each mouse
click, movement, scrolling, and keystroke was logged. For keystrokes, we avoided
implementing a key logger and only logged the time-stamp of any pressed key.

Perceived Productivity Self-Reports. To capture how developers perceive

2.3 Study Method 51

Figure 2.1: Notification to Prompt Participants to Respond to the Experience
Sampling Survey.

Figure 2.2: Screenshot of the Experience Sampling Survey (Pop-Up).

their own productivity, we used experience sampling in the form of regular
self-reports. Experience sampling has previously been used in multiple studies
(e.g., [Czerwinski et al., 2004; Mark et al., 2016a,b; Mathur et al., 2015]), and
allowed us to capture perceived productivity on a periodic and fine granular basis.
For the experience sampling, a notification window appeared on the bottom

52
Chapter 2. The Work Life of Developers:

Activities, Switches and Perceived Productivity

right corner of the participants’ main screen in regular intervals (see Figure 2.1)
prompting the participant to answer a short survey on productivity. To minimize
the risk of negatively influencing the participant’s work, the notification window
also offered options to postpone the survey. By default, the notification window
was shown every 60 minutes, but participants could also change the interval,
which was only done by one participant who changed it to a 90 minute time
interval. Additionally, participants were also able to manually trigger the survey
in case they wanted to answer the questions more often. If the participant was
regularly working on a virtual machine or secondary device, we installed the
application on the other devices as well, but disabled the pop-ups so as to not
interrupt the participant more than necessary. Overall, participants answered
74.6% of the triggered self-reports within five minutes of the notification, 21.6%
were postponed for an average of 38 (±43) minutes, and 3.8% were ignored.

Once the participant started the self-reporting, another window with the
survey appeared (see Figure 2.2). This survey asked participants about their
perceived level of productivity for the previous work session using a 7-point
Likert scale and to specify the activities and tasks they performed. To facilitate
the participant’s response, the text boxes offered auto-completion and quick-
insert buttons for frequently used and previously inserted activity descriptions.
We only used a single question on productivity to minimize the disruption
and also since previous research has shown that participants interpret different
terms of productivity, such as efficiency, effectiveness, or accomplishment, very
similar [Mark et al., 2016b]. Since the survey questions remained the same
throughout the study and were related to the current context, we expected the
cognitive burden on the participant and the distraction for answering the survey
to be relatively low, as also illustrated in other research [Czerwinski et al., 2000;
Monk et al., 2008]. Participants used an average of 33.5 (± 39.4) seconds to
answer the two questions. We found no significant differences in the total number
of times participants answered the survey per day over the whole course of the
study, suggesting that they used similar effort throughout the study and the
burden of answering did not increase for them.

2.4 Data Collection and Analysis 53

Table 2.2: Data Collected by the Monitoring Application.

Data Description Data Collected
Background Monitoring
Program usage current process name and currently

active window title, captured once
every 10 sec

1 479 383 items

User Input
- Mouse clicks as event happens 798 266 clicks
- Mouse movement distance aggregated pixels moved per sec 2 248 367 entries
- Mouse scroll distance aggregated pixels scrolled per sec 296 763 entries
- Keystrokes only count, not exact keystrokes (for

privacy reasons)
3 515 793 keystrokes

Survey Pop-Ups
Tasks and Activities participants self-reported tasks and

activities from the past 60 mins (for
one participant: 90 mins)

2 237 items

Perceived Productivity slider where the participant rates the
perceived productivity of the previous
work session

1 350 ratings

Procedure. After we explained the study and installed the application, we
asked participants to resume their normal working habits during the period of the
study and answer the experience sampling probes when the pop-up appeared. We
also told participants to ask us any questions about the study, the application or
captured data at any point in time during the study. At the end of the study, we
interviewed each participant to collect demographic information and information
on the project they were working on, the company and their experience of
using the monitoring tool and participating in the study. We then collected
the monitoring and self-report data and un-installed the application. Table 2.2
summarizes the data we collected from the participants.

2.4 Data Collection and Analysis

During the study, the monitoring application collected data from 2197 hours
of participants’ computer use over a total of 220 work days. Table 2.1 shows

54
Chapter 2. The Work Life of Developers:

Activities, Switches and Perceived Productivity

that each participant was part of the study for between 7 and 20 work days
(mean: 11.0 days, ±3.6). Table 2.2 shows how much of each type of information
we collected. This section describes how we prepared the collected data for the
analysis.

2.4.1 User Input Data

Whenever a study participant pressed a key, or clicked, scrolled or moved their
mouse, the event-type and its timestamp were recorded by the monitoring
application. We divided the events into work days, where a day spanned from
04:00:00 A.M. to 03:59:59 A.M. the following morning, very similar to Amann
et al. [2016]. This division was chosen as some participants stayed up late and
logged input continuously before and slightly after midnight, suggesting that
their ’work day’ was not yet over at that time. With respect to time usage, but
not application usage, we removed weekends, as we wanted to examine trends
and based on initial inspection the weekend data was highly irregular. If a day
had less than 10 minutes of recorded active input for a given developer, that day
was not included when considering keyboard and mouse input.

Within a day, we determined inactive and active periods of computer use. An
inactive period is a lapse in any type of input for 2 minutes or longer; conversely,
an active period is 2 minutes or longer during which there is no inactivity. This
2 minute mark was chosen as a reasonable boundary based on previous research
that found an average time of 2 min 11 sec being spent on any device or paper
before switching [González and Mark, 2004], as well as research by Chong and
Siino [2006] who found that a typical interruption for one work team lasted 1
min 55 sec, and 2 min 45 sec for another team. We further defined inactive
periods by sorting them into two categories: short and long breaks away from the
computer. A short break from the computer is defined as a period of inactivity
that lasts at least 2 minutes but less than 15 minutes and that is often spent
with answering a co-workers question or as a coffee break. A long break from
the computer is defined as a period of inactivity equal to or longer than the
15 minute threshold, and is often used for meetings and longer breaks from
work, such as a lunch [Epstein et al., 2016b; Sanchez et al., 2015]. We used a 15

2.4 Data Collection and Analysis 55

minutes threshold based on previous work by Sanchez et al. [2015] that described
a typical developer’s coffee break to be 12 minutes on average and factored in a
3 minute deviation.

2.4.2 Preparing Program Data and Mapping to Activities

Our monitoring application recorded the current process and window titles of
participants’ program usage during their work day, once every 10 seconds. To
provide a higher-level, aggregated view on participants’ work, we mapped each
entry of a program’s use to activity categories, also taking into account the window
titles for clarification. These activity categories group actions undertaken by a
developer, for example the category Coding denotes any developer action that is
related to reading, editing or navigating code. We reused the activity categories we
identified with an open-coding approach in our previous study [Meyer et al., 2014].
This mapping process was a semi-automated open-coding process; automated,
where an action fit into an obvious category (e.g., SourceTree belonging to
the activity category Version Control) and manual, where actions could not
automatically be classified distinctively using the program and window title
names (e.g., website names to the activity categories Work Related Browsing
or Work Unrelated Browsing). When a participant did not switch programs or
have any mouse or keyboard interaction for the past 10 seconds, the application
logged it as ‘idle’.

In order to complete the coding, we first defined a set of keywords for each
activity that distinctly map a program to an activity. For instance, we mapped
Microsoft Word to Reading or Writing Documents and Microsoft Outlook either
to Email or Planning, depending on the details in the window title. We created
a script using these keywords to produce the initial mapping, then inspected the
results and iteratively refined the keywords until most programs were mapped. In
cases where a program could be mapped to two or more activities, we performed
a manual mapping. For example, as work in a text editor could be mapped to
several activities (e.g., Coding, Reading or Writing Documents, or Planning),
we manually mapped all editor use. Similarly, we mapped most website use
manually, either to Work Related Browsing or Work Unrelated Browsing. In both

56
Chapter 2. The Work Life of Developers:

Activities, Switches and Perceived Productivity

cases, the window title held valuable information about the activity a developer
was performing. We further manually checked all automated mappings for the
following activities: Debugger Use, Code Reviews, and Version Control. All
entries, related to coding, which could not distinctively be mapped to one of
these categories, were mapped to Coding.

To better understand what participants were doing when they were not
actively working on their computer (‘idle’ events), we combined the data logged
by the monitoring tool with participants’ self-reports. As most participants
not only reported the tasks they worked on in the past work session, but also
planned and informal meetings, and lunch and coffee breaks, we could in many
cases infer if a period of ‘idle’ time belongs to one of these categories. In cases
where the participant did not report a meeting or break, we had no way of
identifying the reason for the ‘idle’ time, which is why the amount of time spent
with planned and informal meetings might be higher than reported in this paper.
The self-reports were not only used to map ‘idle’ time, i.e. time not actively
spent on the computer, to breaks and meetings, but also to analyze developers’
self-reported tasks.

2.5 Results

This section presents the results of our study on developers’ work practices and
their relation to the perceived productivity by investigating our four research
questions.

2.5.1 What Does a Developer Do?

To answer our first research question, “What does a developer’s work day look
like?”, we analyzed the span of a developer’s work, the amount of time during the
span the developer was active, the nature of the breaks taken, the applications
used, and the activities pursued.

2.5 Results 57

Figure 2.3: Total Hours of Work versus Hours Active.

Hours Spanned and Hours Active

The number of hours spanned by a developer’s work day is defined as the time
between the earliest and latest inputs on a given day, regardless of intervening
activities or inactive periods. For example, if the first mouse click happened at
9:00 A.M. and the last keystroke happened at 17:30 P.M., the time span would be
8.5 hours. The number of hours active is the cumulative time when a participant
was logging active input.

Figure 2.3 contrasts the hours spanned and hours active per developer across
all days monitored. Some participants (e.g., S13 and S20) tend to space their
work out over as many as 21.4 hours, whereas others (e.g., S12 and S15) keep
more compact work hours and remain active during the bulk of their time.
Overall, developers averaged spans of 8.4 (±1.2) hours per day, with active time
of 4.3 (±0.5) hours. It should be noted that the hours active are not synonymous
with an individual’s total working time; since the hours active value is based on
the time the participant is using their mouse or keyboard, it does not account
for meetings or other work activity away from the computer.

58
Chapter 2. The Work Life of Developers:

Activities, Switches and Perceived Productivity

Short and Long Inactive Periods

Every hour, developers take an average of 2.5 (±0.8) short breaks that are about
4.2 (±0.6) minutes long each and in which the developers are not interacting
with their computer. This results in a total of 10.5 minutes of inactive time every
hour of work, which we assumed to be likely unplanned interruptions, such as
co-workers asking a question or a quick coffee break. According to Minelli et al.
[2015], who analyzed how developers spend their time inside the IDE, inactive
times are often spent with program comprehension. This notion of taking a
few minutes to understand, think about or read the current artifact, such as
code, a website or document, is likely another reason for these short inactivities.
There was no obvious trend towards taking more or fewer short breaks during
a particular part of the day; rather, short breaks appear to be fairly evenly
distributed for all participants.

The number of long breaks in which developers did not interact with their
computer for longer than 15 minutes averaged 3.3 (±1.4) per day, with a total
length of 54.7 (±28.2) minutes; this corresponds to an expectation of two longer
coffee breaks, a lunch, and perhaps a meeting. The participants with a high
number of long breaks appear to be those who have a tendency towards longer
hours spanned, with additional long breaks happening in the late afternoon or
evening before these individuals returned to work. Since these long breaks were
likely planned by the developers, they were also more likely to be self-reported
as a distinct activity in the pop-up surveys.

Applications Used and Frequency of Use

Participants used a total of 331 different applications, with each participant
using an average of 42.8 (±13.9) different applications over the study duration
and 15.8 (±4.1) applications per day.

Table 2.3 shows the ten most popular applications across all participants
(all were using Windows operating systems). There is a notable amount of time
spent using File Explorer, although this may be due to the fact that it is the only
application, other than Internet Explorer, that was used by all 20 participants.

2.5 Results 59

Table 2.3: Top 10 Used Applications (Sorted by Usage).

Application % of time used # of users
Microsoft Outlook 14.2% 18
PuTTY 12.8% 8
Google Chrome 11.4% 16
Microsoft Internet Explorer 9.4% 20
Microsoft Visual Studio 8.3% 13
File Explorer 6.6% 20
Mozilla Firefox 5.9% 8
Eclipse 3.0% 10
Microsoft OneNote 2.3% 9
Command Line 2.2% 16

Despite everyone using Microsoft Internet Explorer, 80% of the participants also
used Google Chrome and spent more time in it than in the Internet Explorer.

Activities Pursued

Table 2.4 shows the activities developers pursue during their work days. A
developer’s typical work day is mostly spent on coding (21.0%), emails (14.5%),
and work-related web browsing (11.4%). Using the debugger, reviewing other
developers’ code, and version control account for just 2.4% of the participants’
time. When looking at individual versus collaborative activities, 24.4% of
a developer’s day is spent pursuing collaborative activities with co-workers,
customers, or managers, such as planned or ad-hoc meetings and emails. These
percentages do not include uncategorized inactive time towards the total time as
the monitoring application could only capture non-computer work in case the
participants self-reported it.

60
Chapter2.

The
W
ork

Life
ofD

evelopers:
Activities,Switches

and
Perceived

Productivity
Table 2.4: Developers’ Fragmented Work: Activities Performed.

Activity Category % of time over Duration per Time spent before
whole period day (in hrs) switching (in mins)

Avg Stdev Max Avg Stdev Max
Development
Coding reading/editing/navigating code (and

other code related activities)
21.0% 1.5 ±1.6 7.3 0.6 ±2.6 135.7

Debugger Use using the debugger inside the IDE 0.4% 0.1 ±0.2 0.8 0.5 ±0.8 13.4
Code Reviews performing code reviews 1.3% 0.3 ±0.4 2.1 1.3 ±4.5 13.4
Version Control reading/accepting/submitting changes 0.7% 0.1 ±0.3 2.2 0.6 ±1.0 12.9
Email reading/writing emails 14.5% 1.1 ±1.3 8.1 0.9 ±4.8 89.6
Planning editing work items/tasks/todos; creat-

ing/changing calendar entries
4.8% 0.5 ±1.1 5.1 1.1 ±2.5 67.5

Read/write documents reading/editing documents and other
artifacts, e.g. pictures

6.6% 0.5 ±0.7 4.5 0.8 ±3.3 114.7

Planned meeting scheduled meeting/call 6.5% 1.0 ±1.3 7.1 15.8 ±35.3 203.1
Informal meeting ad-hoc, informal communication; e.g.

unscheduled phone call / IM, or col-
league asks a question

3.4% 0.5 ±0.6 4.2 2.0 ±6.5 138.2

Work related browsing Internet browsing related to code/-
work/task

11.4% 0.8 ±1.3 12.8 0.5 ±5.5 102.6

Work unrelated browsing Internet browsing work unrelated 5.9% 0.5 ±0.7 3.4 1.1 ±4.3 91.8
Other Anything else; aggregates several small

sub-categories, such as changing mu-
sic, updating software, using the file
explorer or having a break

11.4% 0.8 ±1.4 10.5 0.4 ±5.6 112.5

Other RDP Remotedesktop use which could not be
mapped to another category

12.0% 1.5 ±1.8 8.2 0.3 ±2.6 85.4

2.5 Results 61

When we inspected the data, we observed a notable range between the
minimum and maximum time developers spent on each activity per day. The
minimum time was virtually 0, or only a few seconds per day. The maximum
time a participant spent on a single activity was 12.8 hours on one day: S13, who
was evaluating various continuous integration and build systems. It is clear that
the duration and type of activities vary greatly depending on the individuals
and their current goals. We also observed differences in the distribution of the
activities between companies. For example, developers S11 and S12, both from
the same company, spent significantly less time on emails, on average just 0.7
minutes (±0.5) per day, compared to the other participants, who spent an average
74.3 minutes (±74.8) on emails.

The amount of time spent in coding or debugging might be higher than
reported, as it was not possible to map all activities from the category Remote
Desktop (OtherRdp), as there was not enough context available for an accurate
mapping either automatically or manually. Similarly, the amount of time spent
in planned and informal meetings might be higher than reported, as participants
likely did not self-report all meetings they attended via the pop-up survey. This
made it impossible to map all ‘idle’ time to an activity.

Developers’ Self-Reported Tasks

An analysis of developers’ self-reported tasks shows that there is a wide variety
in what developers work on, but in particular also, in what developers denote
as a task. In many cases, participants reported activities they were performing,
such as “coding”, working on “emails” or performing a “web search”, rather
than the intention of the activity, such as the change task or the bug they were
trying to fix. Only in very few cases, did participants mention a bug ID on which
they were working. Furthermore, reported and worked on tasks varied in their
granularity. While some participants were working on a task only a single time
for a part of the 60 to 90 minutes time window, others reported to work on the
same task for several days.

Overall, due to this variance in task definition and granularity, the self-
reported tasks did not provide much further insights into developers’ work days

62
Chapter 2. The Work Life of Developers:

Activities, Switches and Perceived Productivity

Figure 2.4: 3 Types of Developers and their Perceptions of Productivity over the
Course of a Work Day.

(a) Morning Person

●

● ● ●

●

●

● ●

● ●

● ● ● ● ● ● ●

●

● ●

●

●

●

●

●

●

● ●●

●

● ●

● ● ● ● ●

● ●

●

1

2

3

4

5

11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
time

pr
od

uc
tiv

ity

(b) Low at Lunch Person

● ●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

● ●

●

● ●

● ● ●

● ●●

● ●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●●

● ●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

● ● ● ●

2

3

4

5

6

09:00 12:00 15:00 18:00
time

pr
od

uc
tiv

ity

(c) Afternoon Person

●

●●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

● ● ●

●

● ●

●

●

●

●

● ●

● ●

●

●

●

●

2

3

4

5

6

12:00 15:00 18:00
time

pr
od

uc
tiv

ity

other than help with disambiguation of our mappings in some cases. Also, while
the number of resolved or worked on tasks has been rated as a relatively good
measure for assessing one’s own productivity [Meyer et al., 2014], the variance in
self-reported tasks, especially also across developers, suggests that it might be a
somewhat individual help for assessment at best.

2.5.2 How Fragmented is the Work?

To answer our second research question, “How fragmented is a developer’s work?”,
we analyze how much time they spend on an activity before switching to the next
one. The last three columns of Table 2.4 present the times a developer pursues
each one of the activities before switching to another one. With the exception of
planned meetings, a developer only remains in an activity between 0.3 (±2.6) and
2.0 (±6.5) minutes before switching to another one. These very short times per
activity and the variety of activities a developer pursues each day illustrate the
high fragmentation of a developer’s work. The low standard deviations for each
activity further emphasize this finding, which is similar to previous observations
by González and Mark [2004], Ko et al. [2007], and ourselves [Meyer et al., 2014].
At the same time, our data also suggests that there are exceptions to this high
work fragmentation and that in rare occasions, developers spend long hours
without switching activities. For example, participant S4 was coding in the late

2.5 Results 63

afternoon for 135.7 minutes, without any break longer than 2 minutes. Planned
Meetings are the only exception to the short time periods spent on a single
activity with an average duration of 15.8 minutes (±35.3) before switching. Our
analysis of the data also suggests that developers are not using their computer in
most of these planned meetings. The opposite is true for informal meetings, for
which our monitoring tool recorded user input every few minutes. It is important
to note that an activity switch, while contributing to work fragmentation, is not
necessarily a task switch. A developer might switch activities several times while
working on the same task, e.g. switching from coding in the IDE to the web
browser to search for API documentation or code snippets.

To better understand the high number of activity switches, we performed an
n-gram analysis to identify the activities which developers often perform in a
sequence together. The activity pattern, which occurred most often, was a quick
switch to emails during coding tasks. This finding is supported by our results in
a previous observational study, where we learnt that developers often perform
very quick and short context switches during waiting times, which increases their
perceived productivity [Meyer et al., 2014]. Similarly, Amann et al. [2016] found
that developers continue working while builds run in the background. Developers
also regularly switch away from coding to work related web browsing (22.1%),
reading or writing documents (14.3%) or planning (14.2%). These switches can
be explained with the search for additional information necessary to complete
a task, such as a task description from an email, a quick research on the web
(e.g., for a code snippet or tutorial), or reading a documentation-file. After these
quick switches, developers usually switch back to their main coding task.

We were also interested in better understanding what activities developers
were performing before they were interrupted by a co-worker, to learn where to
focus for building task resumption tools. When developers switched their activity
to an informal meeting, they were emailing in 40.1% of the cases, coding in 18.1%
of the cases, and browsing the web (work related) in 13.5% of the cases before
the switch. Switches to work unrelated web browsing were most often caused
during coding tasks (35.5%) and during work related web searches (26.7%), likely
to get a quick break from work.

64
Chapter 2. The Work Life of Developers:

Activities, Switches and Perceived Productivity

2.5.3 Perceived Productivity Changes?

Our third research question asks “Are there observable trends in how developers
perceive productivity?”. We use the developers’ self-ratings of their productivity
via the pop-up survey to investigate this question. For each participant, we
plot the perceived productivity ratings against the time of day the rating was
collected; thus, all ratings from an individual are condensed across the hours of
the day in one plot.

From an analysis of these plots, we found that although there was a lot
of variation between individuals, the plots can be categorized into three broad
groups: morning people, afternoon people, and those whose perceived productivity
dipped around lunch. Figure 2.4 shows examples of these three types. The curved
regression line in the figures shows the overall pattern of what part of the day
an individual developer typically felt more or less productive with the shaded
area showing the confidence range. Morning people were rare in our sample
set (20% of all participants); Figure 2.4(a) shows S5’s perceived productivity
pattern, which is our clearest example of the trend but is not very pronounced.
Afternoon people (8 out of 20, 40%) may be those who are industrious later in
the day, or that feel more productive as a result of having the majority of their
work day behind them (Figure 2.4(c)). The greater number of afternoon people
in our sample reflected previous research that showed that information workers
perceive themselves as most productive in mid-afternoon, peaking around 2-3
P.M. [Mark et al., 2014]. The low-at-lunch group (35%) may see long breaks as
unproductive, or they may simply lag in effectiveness as their physical processes
draw focus away from work (Figure 2.4(b)).

These graphs and numbers suggest that while information workers in general
have diverse perceived productivity patterns, individuals do appear to follow
their own habitual patterns each day. Only for one of the twenty participants it
was not possible to determine a dominant category.

2.5 Results 65

2.5.4 What are Productive Activities?

To answer our fourth research question, “What is the relationship between
developers’ activity and perceived productivity at work?”, we built explanatory
models relating the action and activity data to the productivity ratings.

The purpose of the explanatory models is to describe which factors con-
tribute to the productivity ratings reported by the study participants. For each
participant, we built one stepwise linear regression model for a total of 20 models.
We chose linear regression because it is a simple and intuitive way to model data.
The dependent variable is the reported productivity rating and the independent
explaining variables are: (1) session duration, (2) number of certain events such
as activity switches, (3) keystrokes per minute, (4) mouse clicks per minute, (5)
amount of time spent in activities normalized by session length, and (6) how
much of a session was before mid-day (noon) in percentage2. By choosing linear
regression, we assume that the productivity ratings are interval data meaning
that the distance between the productivity ratings 1 and 2 is the same as the
distance between the ratings 2 and 3, and so on. To facilitate comparison across
models, we specified the intercept value for all models as 4, which corresponds
to an average perceived productivity.

Table 2.5 shows the results of the explanatory modeling. Each column
corresponds to the perceived productivity model of a participant and each row
corresponds to a factor in the model. To reduce the complexity of the table,
we only report the sign of the coefficients; the full coefficients are available
as supplemental material 3. A plus sign (+) in a cell indicates that a factor
has positive influence in a model; for instance, S1 reported higher productivity
ratings with a higher number of self-reported tasks. Similarly, a minus sign (–)
indicates negative influence; for instance, S3 reported lower productivity ratings
for higher session durations. Empty cells correspond to variables that either were
removed as part of the stepwise regression, or were not statistically significant.
An NA value indicates that an event or activity did not occur for a participant

2We chose mid-day, since a previous study found differences in knowledge workers’ activities
before and after mid-day [Mark et al., 2014].

3https://www.ifi.uzh.ch/en/seal/people/meyer/personal-analytics.html

https://www.ifi.uzh.ch/en/seal/people/meyer/personal-analytics.html

66
Chapter 2. The Work Life of Developers:

Activities, Switches and Perceived Productivity

in the study period; for instance, the NA for S1 in Debugger Use means that S1
never used the debugger in the IDE during the study period. In a few cases, we
were also not able to map all ‘idle’ log entries to the two activity categories of
informal meetings or planned meetings due to a lack of information provided in
the self-reports. These cases are also denoted with NA.

Based on the results presented in the table we can make several observations:

(i) No two explanatory models are the same. This suggests that productivity
is a highly personal matter and that perceptions of what is considered to
be productive are different across participants.

(ii) No single factor provides explanatory power across all participants. Fur-
thermore, the same factor can have positive influence for one participant,
and negative influence for another participant, for example the Number of
Self Reported Tasks has both negative (2×) and positive influence (2×).

(iii) The Number of Keystrokes and the Number of Mouse Clicks have more often
positive influence (7×) than negative influence (1× and 2× respectively).

(iv) The activities Email (5× negative), Planned Meeting (6× negative), Work
Unrelated Browsing (5× negative), and Idle (6× negative) have more often
negative influence.

2.5
Results

67
Table 2.5: Explanatory Productivity Models for Participants (‘+’ indicates positive, ‘-’ negative influence; ‘NA’
indicates a never performed activity. Columns ‘Neg’ / ‘Pos’ count the number of times a variable had negative /
positive influence. The ratings are distributed on a 7-point Likert scale: left = “not at all productive” (1), right =
“very much productive” (7)).

Participant S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
Ratings	(total) 45 101 62 94 40 62 80 73 89 92 51 40 76 88 71 42 62 53 100 30
Ratings	(discarded) 0 29 3 4 0 0 0 7 10 10 1 0 7 0 0 0 4 8 11 4
Ratings	(included	in	model) 45 72 59 90 40 62 80 66 79 82 50 40 69 88 71 42 58 45 89 26

Neg Pos NA Ratings	(distribution)
3 3 0 Session	Duration	(in	hours) + − − + − +
2 1 0 Percent	of	Session	Before	Noon − − +

Per	Minute
2 2 0 #	self-reported	tasks + − − +
2 4 0 #	activity	switches + − + + − +
1 1 4 #	meetings NA NA + NA NA −
2 1 7 #	instant	messaging	switches NA NA NA NA + NA NA NA + −
1 7 0 #	keystrokes + + + − + + + +
2 7 0 #	mouse	clicks + + + + + + − + −

Percent	Activity
4 1 0 Dev.	Coding − − − + −
0 1 9 Dev.	Debugger	Use NA NA NA NA NA NA NA + NA NA
2 1 12 Dev.	Code	Reviews NA NA NA NA NA NA NA NA NA NA − NA NA − +
2 0 3 Dev.	Version	Control NA − NA − NA
5 0 0 Email − − − − −
2 3 0 Planning + + ➖ + ➖
4 3 0 Read	/	write	documents + + − − + − −
6 0 5 Planned	meeting NA NA − − − − NA NA − NA −
3 2 9 Informal	meeting NA + NA NA NA − NA NA − NA NA NA + −
2 0 8 Instant	messaging NA NA NA NA NA − NA NA NA −
1 2 0 Work	related	browsing ➖ + +
5 0 2 Work	unrelated	browsing − NA − − − − NA
2 1 0 Other + − −
2 1 4 Other	RDP NA NA − + NA − NA
6 2 2 Idle − − − − + − NA − + NA

68
Chapter 2. The Work Life of Developers:

Activities, Switches and Perceived Productivity

2.5.5 Summary of Results

Our analysis provides a broad range of insights on the relationship between devel-
oper’s work practices and activities and their perceived productivity. Table 7.4
summarizes some of the key findings.

Table 2.6: Summary of Some of the Study Key Findings.

Finding Section

F1 Developers only spend about half their time active on their
computer.

2.5.1

F2 For every work hour, developers have an average of 2.5 short
breaks, totaling 10.5 minutes of unplanned time away from
their computer.

2.5.1

F3 Developers spend about a fourth of their time on coding related
activities and another fourth of their time on collaborative
activities.

2.5.1

F4 The range and time spent on activities varies greatly depending
on the individual and company.

2.5.1

F5 Developers’ work is highly fragmented, spending very short
amounts of time (0.3 to 2 minutes) in one activity before
switching to another one.

2.5.2

F6 Developers’ perceived productivity follows habitual patterns,
broadly categorisable as morning people, afternoon people and
“low-at-lunch” people.

2.5.3

F7 Productivity and the factors that influence it are highly indi-
vidual.

2.5.4

F8 The number of mouse clicks and key strokes often have a
more positive, email, planned meetings, and work unrelated
browsing a more negative impact on perceived productivity.

2.5.4

2.6 Threats to Validity 69

2.6 Threats to Validity

The main threats to our study are construct validity threats due to the monitoring
application we used to collect data. These, and the threats to internal and external
validity, are described in this section.

2.6.1 Construct Validity

The main threat comes with the metrics we base our analysis on, as it is limited
to the data we collected with our monitoring application. We believe that a
chronological record of application use, user inputs, and the addition of self-
reported productivity, tasks, and activities provide a reasonable basis to analyze
a developer’s work. Though, we cannot exclude the possibility that any other
factors influence a developer’s work day and productivity.

Running a monitoring application in a real-world scenario might capture
inaccurate data, due to bugs in the logging application or stability issues. To
mitigate this risk, we ran several test-runs in different scenarios prior to the
study, and observed a user for several hours to compare the logged with the
observed data. No major problems with the tracker were reported during the
tests or at the time of the study.

Even though the monitoring tool is able to capture a broad range of activities
on a participants’ computer, it does not capture activities away from the computer.
Therefore, we asked participants to record their activities/tasks for their time
away from the computer in the periodic self-reports. Furthermore, to capture
activities performed on secondary computers or remote desktops, we asked
participants to install the monitoring application without the self-reporting
feature on these machines as well.

Understanding, categorizing and analyzing the data poses another threat to
validity, especially since it is not straightforward to identify all activities from
the collected data. For instance, mapping ‘idle’ times to self-reported breaks,
planned meetings and informal meetings could not be automated. We also needed
to discard outliers, such as very short work in the middle of the night or on
weekends. To mitigate this risk, we did a manual mapping of activities we were

70
Chapter 2. The Work Life of Developers:

Activities, Switches and Perceived Productivity

uncertain about and checked random samples of the semi-automated mapping.
Assumptions made and thresholds defined were carefully discussed, based on
previous related work, and described in the paper in detail. The short interviews
at the end of the study further helped us to interpret each participants’ data and
work behavior.

2.6.2 Internal Validity

Running a monitoring application on participants’ computers might pose pri-
vacy concerns to participants. To address these concerns, we tried to be very
transparent about the data we collected. The participant was shown the location
where the logs were saved and given the opportunity to censor them. We did not
collect information about what was being typed or clicked on, merely that these
events were occurring. We also assured the participant that all collected data
will be anonymized and saved on password-protected devices or in locked filing
cabinets.

Monitoring participants’ during their work bears the risk of changing their
behavior. To mitigate these risks, we tried to collect as much data as possible in
the background and optimized the performance of the data collection to avoid
lags, creating a non-intrusive experience for participants. Several participants
explicitly mentioned that they usually forgot about the monitoring application
and were only reminded when they were prompted about the self-reports.

Interrupting participants with a short survey once an hour might have influ-
enced their work behavior and habits. To address these concerns, we tried to only
show the pop-ups when necessary and reduce the effort needed to fill them out by
showing previous responses, having quick response buttons, and auto-completion
boxes. Additionally, the participant had the chance to postpone the survey in
case it interrupted at an inopportune moment. The continuously very short but
stable amount of time used to answer the periodic survey throughout the study
and the small variation in the number of responses per participant and day also
suggests that participants’ behavior was not affected much and that they did
not get annoyed by the survey.

2.6 Threats to Validity 71

2.6.3 External Validity

The number of participants or the selection of participants might limit the
generalizability of the results of this study. In particular, our participants were
all using Windows as their operating system due to our monitoring application
being built for Windows. Overall though, we tried to mitigate the threats to
external validity and generalizability by selecting participants from four different
software companies of varying size, with more and less well-established products,
different kinds of customers, and different stages of product development. Studies
were spread to three different countries, Canada, US, and Switzerland, and across
half a year. Additionally, all participants are professionals who were studied in
their everyday, real-world work environment and not in an experimental exercise.
The external validity is further strengthened by the broad range of development
experience of our participants, ranging from junior to senior developers with
an average professional development experience of 14.2 years (±9.6, ranging
from 0.5 to 40 years). Finally, our participants worked on projects using 7 of
the top 10 most used programming languages according to a recent large-scale
study [StackOverflow, 2017]. While the large-scale study also showed that 55%
of all developers use Windows as an operating system and our focus on Windows
thus maps to a majority of developers, further studies with a broader participant
pool are needed to assess the generalizability of our results.

Another limitation might be the study running for roughly two weeks per
participant, as developers’ activities might vary greatly at different stages and
iterations of their projects. We tried to mitigate this risk by having participants
from different teams at different stages of their project and iterations, and by
staggering the monitoring period between participants so that varying times of
the year were covered. In the final interview, most participants also agreed that
the study took part in fairly usual, and not extraordinary, work weeks.

72
Chapter 2. The Work Life of Developers:

Activities, Switches and Perceived Productivity

2.7 Discussion

The results of our study shed new light on the work practices, fragmentation and
perceptions of productivity of individual software developers. In the following,
we discuss implications and opportunities of our findings, in particular the
individuality of productivity and its use for designing better tool support, and we
report on an exploratory analysis to predict high and low productivity sessions.

2.7.1 Individuality of Productivity

To quantify a developer’s productivity, related work predominantly focused on a
single or a small set of outcome measures, such as the lines of code or function
points. While these measures can be used across developers, they neglect to
capture the individual differences in the way that developers’ work as well as
the differences in their work and their perceived productivity. The results of our
study show that perceived productivity is in fact a very personal matter and the
influence and impact of the factors used for our explanatory productivity models
varied greatly. This suggests that measures or models of productivity should
take into account the individual differences in what is perceived as productive or
not and capture a developer’s work more holistically rather than just by a single
outcome measure. Such individual models could then be used to provide better
and more tailored support to developers, for instance, to foster focus and flow at
work.

At the same time, our results also show that while there are individual
differences, there are tendencies amongst groups of software developers, for
instance, with the number of key strokes and mouse clicks having a positive
influence on productivity perception for 7 of the 20 participants. Similarly, we
identified types of developers with similar trends of perceived productivity over
the course of the day, including morning and afternoon people, which resemble
the morningness and eveningness types that Taillard et al. [1999] identified in
their large-scale study on people’s sleeping habits. These results suggest that it
might be possible to identify clusters of software developers with fairly similar
productivity models despite individual differences, which could then be used

2.7 Discussion 73

to provide tool support tailored to these clusters, for instance, for scheduling a
productive work day.

2.7.2 Supporting Flow and Retrospection

In our previous study, we found that developers feel particularly productive
when they get into “the flow” without having many switches [Meyer et al., 2014].
Results from this and other studies suggest that getting into the flow during
work might not be very easy, given the high fragmentation of work and the many
short breaks and interruptions.

At the same time, our analysis of the collected data suggests that it might
be possible to identify individualized proxies for developer productivity, such as
using the number of mouse clicks or key strokes per minute or the time spent
in work-unrelated browsing for certain developers. Knowing if a developer is
productive or unproductive at the moment by using such proxies could be used
to support getting and staying in a highly productive “flow” state. In particular,
one could use this to indicate the availability of a developer for interruptions
by changing the availability status in instant messaging tools, or with a visual
external cue to avoid external interruptions at particularly inopportune moments,
similar to what Züger and Fritz [2015] suggested. Or, one could also use this to
provide awareness to the developers themselves on their flow and productivity,
by indicating them when they are stuck and it might be time to ask a co-worker
for help or to take a break, or even blocking work-unrelated websites for 25
minutes—similar to the PomodoroTechnique [2019]—and helping them to focus
when they are procrastinating.

Being able to predict, to some extent, a developer’s productivity on an
individual basis could also be used to provide developers with individualized
retrospection support, in the form of daily or weekly summaries of their work.
With the Quantified Self movement, more and more people are using applications
and devices to track themselves—mostly with a focus on the non-work related
activities, such as sports. These persuasive technologies provide users an oppor-
tunity to reflect upon their own activities and support desired improvements,
such as a more active lifestyle (e.g., [Bravata et al., 2007; Consolvo et al., 2008b;

74
Chapter 2. The Work Life of Developers:

Activities, Switches and Perceived Productivity

Fritz et al., 2014]), due to self-monitoring and goal-setting [Fritz et al., 2014].
A proxy of an individual developer’s productivity might provide such benefits
for the software development domain, by increasing developers’ awareness about
their own work practices and productivity and thereby helping them to improve
them.

2.7.3 Scheduling a Productive Work Day

By knowing the trends of developers’ perceived productivity and the activities
they perceive as particular productive/unproductive, it might be possible to
schedule the tasks and activities developers must perform in a way that best fits
their work patterns. For example, if a developer is a morning person and considers
coding particularly productive and meetings as impeding productivity, blocking
calendar time in the morning for coding tasks and automatically assigning
afternoon hours for meeting requests may allow the developer to best employ
their capabilities over the whole day. Or, it could remind developers to reserve
slots for unplanned work or interruptions at times where they usually happen.

2.7.4 Predicting High & Low Productivity

To examine whether we might be able to identify high and low productivity
sessions with the collected data, we performed an initial, exploratory analysis,
building predictive models using logistic regression. For each participant,
we computed the median productivity rating individually, which we assumed
to be the standard perceived productivity of a developer. We then used the
productivity (high and low) as the dependent variable and the factors used in
the explanatory models (see Table 2.5) as the independent variables, and we
built two prediction models using binary logistic regression:

Model 1: Is the reported perceived productivity above the median productivity?
(High Productivity)

Model 2: Is the reported perceived productivity below the median productivity?
(Low Productivity)

2.7 Discussion 75

Table 2.7: Models to Predict High / Low Productivity Sessions.

We built and evaluated the models for each participant using 50 random
split experiments: 2/3 of the participant’s data was used for training and the
remaining 1/3 of the data was used for testing the model. In total, we ran 50 ×
2 × 20 + 50 = 2 050 experiments. For each experiment, we measured the success
of the predictions with precision and recall. Precision represents how many of
the returned results are relevant (correct), and recall represents how many of
the relevant results were returned. We then averaged the precision ratings over
the 50 experiments for each model and participant to receive a single precision
rating. We did the same for recall.

76
Chapter 2. The Work Life of Developers:

Activities, Switches and Perceived Productivity

Table 2.7 shows the results. In addition to the precision and recall values,
we report in the Ratio columns the percentage of High productivity and Low
productivity sessions for each participant. On average, the models have a
precision of 0.57 (High Productivity) and 0.56 (Low) and recall of 0.48 (High)
and 0.43 (Low). For some participants, the precision and recall values are above
0.70. The results are promising and suggest that even with a relatively small
number of reported productivity ratings, it is possible to build personalized,
predictive productivity models. To build the models we used the session length
and information about events (keystrokes, mouse clicks), and activities. We
expect that with more context and data, such as active task information, window
contents, calendar information, development experience, time of day, or possibly
biometrics, the quality of the predictions can be improved further.

2.7.5 Privacy Concerns

As with all approaches that collect personalized data on people, collecting
information on a developer’s activities on the computer potentially raises many
privacy concerns. Especially given the focus of our study on productivity, some
people were skeptical and declined to participate. This indicates the sensitivity
of the data and the need for further research on the privacy concerns of such
broad, work-related data. We believe that integrating potential users early on
in the design process of building such a tool is crucial to increase acceptance of
and engagement with the tool. Furthermore, we expect that the voluntary use
of such applications and its ability to tailor to the individual is important for
its success since it focuses on the intrinsic motivation of developers to improve
or better understand themselves. Requiring the use of such tools by upper
management on the other hand will lead to a ‘gaming’ as previous research found
and suggested (e.g., [Treude et al., 2015]), since developers might fear that the
gathered information could influence their employment and increase pressure.

2.8 Summary 77

2.8 Summary

Related work has proposed a wide variety of approaches to quantify the produc-
tivity of software developers, mostly only taking a single aspect of a developers’
work into account. In our paper, we present a more holistic approach to examine
developers’ work practices and their relation to perceived productivity. We
conducted a study with 20 professional software developers in four different
companies in situ, to investigate how developers spend their work days and what
activities they perform. We applied a combination of computer logging and
experience sampling by using a background monitoring application and by letting
developers answer pop-up questions every 60 minutes. The results show that
developers spend their time on a wide variety of activities, about a fourth of it
on collaborative activities, such as meetings or emails. On average, participants
spend only between 0.3 and 2 minutes on each activity, before switching to
the next one. They also have 2.5 short per hour and 3.3 breaks per day. This
demonstrates how fragmented a developer’s normal work day is.

Based on developers’ self-reports, we analyzed how their perceived produc-
tivity changes throughout a work day. We found a lot of variation between
individuals, but that they can roughly be grouped into morning people, low-at-
lunch people and afternoon people. We also correlated perceived productivity
with activities and user input using a stepwise linear regression model per par-
ticipant. The data suggested that productivity is a personal matter and that
perceptions vary greatly as different factors in a developer’s work day can in-
fluence productivity either positively or negatively. More user input was often
associated with a positive, while emails, planned meetings and work unrelated
websites were most often associated with a negative perception of productivity.
Based on our findings, we propose a number of design approaches and tools to
help increase developer productivity. For instance, by supporting developers
to get into and stay in “the flow”, by reducing interruptions at inopportune
moments and by helping them to focus when they are procrastinating. Finally,
we ran an exploratory analysis of predicting productivity for individuals, based
on their computer usage. The results are promising and suggest that even with

78
Chapter 2. The Work Life of Developers:

Activities, Switches and Perceived Productivity

a relatively small number of reported productivity ratings, it is possible to build
personalized, predictive productivity models. In the future, we plan to work on
improving the quality of these predictions by including more context and data,
such as active task information, experience, time of the day, and biometrics.

2.9 Acknowledgments
The authors would like to thank the study participants and all of our reviewers
for their insightful remarks. This work was funded in part by ABB, SNF and
NSERC.

3
Characterizing Software

Developers by Perceptions of
Productivity

André N. Meyer, Thomas Zimmermann, Thomas Fritz
Published at the 2017 ESEM Conference on Empirical Software Engineering and

Measurement,
Contribution: Study design and execution, participant recruitment, data

collection, partial data analysis, and paper writing

Abstract

Understanding developer productivity is important to deliver software on time
and at reasonable cost. Yet, there are numerous definitions of productivity
and, as previous research found, productivity means different things to different

80 Chapter 3. Characterizing Software Developers by Perceptions of Productivity

developers. In this paper, we analyze the variation in productivity perceptions
based on an online survey with 413 professional software developers at Microsoft.
Through a cluster analysis, we identify and describe six groups of developers
with similar perceptions of productivity: social, lone, focused, balanced, leading,
and goal-oriented developers. We argue why personalized recommendations for
improving software developers’ work is important and discuss design implications
of these clusters for tools to support developers’ productivity.

3.1 Introduction

Understanding, measuring and optimizing software developers’ productivity is
important to deliver software on time and at reasonable cost and quality. Previous
work introduced numerous measures of productivity that vary by their focus
on specific outputs of development work, such as lines of code [Devanbu et al.,
1996; Walston and Felix, 1977], function points [Jones, 1994], or completed
tasks [Zhou and Mockus, 2010], over time. Other researchers have looked at
organizational factors and their impact on developer productivity, such as the
team [Blackburn et al., 1996; Boehm et al., 2000; Melo et al., 2011] and workplace
characteristics [DeMarco and Lister, 2013]. While these measures and factors can
be valuable to compare certain aspects of productivity, they neglect to capture
the many differences in perceptions of productivity as well as the differences
in developers’ work, roles and habits. By investigating developers’ perceptions
of productivity, several researchers concluded that developers are different in
what they consider as productive or unproductive [Johnson et al., 2003; Melo
et al., 2011; Meyer et al., 2014; Vasilescu et al., 2016b]. Yet, little is known
about the characteristics, the variation, and the commonalities in developers’
productivity perceptions. A better understanding of these aspects of developers’
productivity perceptions can help to provide better and more tailored support to
developers. In this paper, we explore the characteristics of developers’ perceptions
of productivity and the clusters of developers with similar perceptions. We report
on the results from an online survey with 413 professional software developers at
Microsoft. We show that developers can roughly be clustered into six groups with

3.2 Related Work 81

similar perceptions—social, lone, focused, balanced, leading, and goal-oriented
developer—thus allowing to abstract and simplify the variety of individual
productivity perceptions. We characterize these groups based on the aspects that
developers perceive to influence their productivity positively or negatively, and
by the measures developers are interested in to reflect about their productivity.
We discuss the implications of our clusters on software development and their
potential in optimizing developers’ productivity and support tools.

3.2 Related Work

To avoid repetitions in this thesis, we present and summarize related work on
developer productivity and factors that influence it in Section 1.6 of the synopsis.

3.3 Methodology

To explore developers’ productivity perceptions, in particular the variations
and similarities amongst developers, we designed and conducted a survey and
analyzed the collected answers from 413 participants.

3.3.1 Data Collection

We conducted an online survey, consisting of four main questions about produc-
tivity perceptions, at Microsoft.

Survey Design. The first two questions Q1 and Q2 asked the participants to
describe a productive and an unproductive work day in two words each (“Please
describe what a productive work day is to you in two words.”, “Please describe what
an unproductive work day is to you in two words.”). We prompted users for two
keywords each to foster more than one precise definition of productivity, similar
to what we applied in a previous study [Meyer et al., 2014]. The third question
Q3 asked the agreement with statements on factors that might affect productivity.
The last question Q4 asked about the interestingness of productivity measures

82 Chapter 3. Characterizing Software Developers by Perceptions of Productivity

at work. The order of the questions was chosen to not bias the participants when
they described productive and unproductive work days (Q1 and Q2), before
showing them the list of statements and measures (Q3 and Q4). The complete
survey can be found as supplementary material . None of the questions were
required to be answered and participants could stop the survey at any point in
time.

Productivity perceptions (Q3). For question Q3, “Please rate your agreement
with each of the following statements”, we used a symmetric, five-point Likert scale
from strongly agree (5) to strongly disagree (1) to ask about the agreement with 20
statements on when people feel productive, for example, “I feel productive when
I write code.” The statements were selected from related work that analyzed the
impact of various work patterns on productivity. We focused on statements about
activities software developers pursue during a work day and the fragmentation
of their work. Specifically, we asked participants about the perceived relation
between productivity and coding related activities (that is, their main work
activity) [Albrecht, 1979; Meyer et al., 2014]; social activities such as emails [Mark
et al., 2016b], meetings [Meyer et al., 2014], and helping co-workers [Chong and
Siino, 2006; Meyer et al., 2014]; work unrelated activities such as breaks [Epstein
et al., 2016a]; the fragmentation of their work such as the impact of distractions
and multi-tasking [DeMarco and Lister, 2013; González and Mark, 2004; Mark
et al., 2016b]; the time of the day [Mark et al., 2014; Sach et al., 2011; Spira and
Feintuch, 2005]; and their happiness at work [Graziotin et al., 2014a; Khan et al.,
2011].

Productivity measures (Q4). For question Q4, “Please rate how interesting
each of the following items would be for you to reflect on your work day or work
week”, we used a symmetric, five-point Likert scale from extremely interesting
(5) to not at all interesting (1) to ask about the interestingness of 30 potential
measures of productivity to reflect about work, such as “The time I spent coding.”
or “The number of emails I sent.” The measures were selected as follows: for the
categories, which we identified for Q3 from related work, we selected measures

3.3 Methodology 83

related to how much time was spent on an activity/event and the total number
of times an activity/event occurred. We further added measures related to the
overall time spent on the computer and within various applications, and the
tasks worked on, which developers in another study on productivity considered
to be most relevant [Meyer et al., 2014].

Participants. We advertised the survey by sending personalized invitation
emails to 1600 professional software developers within Microsoft. To incentivize
participation, we held a raffle for two US$ 50 gift certificates. In total, 413 people
participated in the survey (response rate of 25.8%); 91.5% of the participants
reported their role to be individual contributor, 6.8% team lead or manager, and
1.7% stated they are neither. Participants had an average of 9.6 years (±7.5,
ranging from 0.3 to 36) of professional software development experience.

3.3.2 Data Analysis

We used the responses to Q3 to group participants with similar perceptions of
productivity together. First, we normalized the responses. When responding
to surveys, some participants are more positive than others, which can lead
to biases in the responses. For example, Alice might center her responses to
the question Q3 around the response to “agree”, while Bob tends to center his
responses around the response “neutral”. To correct for such personal tendencies,
we normalized responses to Q3 and Q4 as follows. We treated the scale as numeric
and for each survey participant we computed the median response for Q3 and
Q4 respectively: medianQ3 and medianQ4. We then subtracted the median from
the responses and computed the sign. More formally, for the response rq,I to a
question q and item I, we normalize with sign(rq,I – medianq). As a result, we end
up with three categories: A value of +1 indicates that a participant responded
more positively about an item than for most of the other items (HIGHER).
A value of –1 indicates that a participant was more negative about an item
(LOWER). A value of 0 indicates that a participant was neutral towards an
item. We used medians instead of means because they more effectively capture
neutral responses as zero. Next, we clustered participants into groups using

84 Chapter 3. Characterizing Software Developers by Perceptions of Productivity

the pamk function from the fpc package in R. The input was the normalized
responses to Q3. The pamk function is a wrapper function to the commonly
used pam clustering function. The wrapper computes the optimal number of
clusters. In our case, the optimal number of clusters was six. The resulting
clusters — social, lone, focused, balanced, leading, and goal-oriented developers
—are discussed in the next section. Finally, to describe the inferred groups, we
used the responses to questions Q1, Q2, and Q3. We created comparison word
clouds for the responses to Q1 and Q2 using the wordcloud package in R. These
word clouds depict the relative frequency of the most frequently used words for
each cluster, with more frequently used words being displayed in a bigger font
size. Furthermore, we used the responses to Q4 to identify the measures that
developers of a cluster are interested in.

3.4 Results

We identified the following six clusters based on our analysis of Q3. We further
describe them based on the responses from Q1 (see the word clouds in Figure 3.1,
one color per cluster), Q2 (Figure 3.2) and Q4:

1. The social developers (C1) feel productive when helping coworkers, collab-
orating and doing code reviews. To get things done, they come early to
work or work late and try to focus on a single task.

2. The lone developers (C2) avoid disruptions such as noise, email, meetings,
and code reviews. They feel most productive when they have little to no
social interactions and when they can work on solving problems, fixing
bugs or coding features in quiet and without interruptions. To reflect about
work, they are mostly interested in knowing the frequency and duration of
interruptions they encountered.

3. The focused developers (C3) feel most productive when they are working
efficiently and concentrated on a single task at a time. They are feeling
unproductive when they are wasting time and spend too much time on

3.4 Results 85

Figure 3.1: Comparing the clusters with respect to words that developers associate
with productive (Q1) work days. Terms in turquoise are related to Cluster 1,
orange to Cluster 2, purple to Cluster 3, pink to Cluster 4, green to Cluster 5,
and gold to Cluster 6. The size of a term corresponds to the difference between
the maximum relative frequency and the average relative frequency of the word
across the six clusters.

a task, because they are stuck or working slowly. They are interested in
knowing the number of interruptions and focused time.

4. The balanced developers (C4) are less affected by disruptions. They are less
likely to come early to work or work late. They are feeling unproductive,
when tasks are unclear or irrelevant, they are unfamiliar with a task, or
when tasks are causing overhead.

5. The leading developers (C5) are more comfortable with meetings and emails
and feel less productive with coding activities than other developers. They
feel more productive in the afternoon and when they can write and design
things. They don’t like broken builds and blocking tasks, preventing them
(or the team) from doing productive work.

86 Chapter 3. Characterizing Software Developers by Perceptions of Productivity

Figure 3.2: Comparing the clusters with respect to words that developers associate
with unproductive (Q2) work days. The same color coding and text size applies
as in Figure 3.1.

6. The goal-oriented developers (C6) feel productive when they complete or
make progress on tasks. They feel less productive when they multi-task,
are goal-less or are stuck. They are more open to meetings and emails
compared to the other clusters, in case they help them achieve their goals.

Table 3.1 describes the characteristics of the clusters in more detail, in
particular the cluster name, the statements for which half or more participants in
the cluster gave HIGHER scores for Q3 (second column), and the statements for
which half or more participants in the cluster gave LOWER scores for Q3 (third
column). Prefixed with ©, the table also lists the productivity measures (from
question Q4) which were interesting (second column) or not interesting (third
column) to the majority of developers within a cluster. The tendency reported
in the table corresponds to the average normalized score. If the tendency is not
reported for a statement, it means it was greater than 0.500 (second column)

3.4 Results 87

or lower than –0.500 (third column). The first row lists the statements that
were scored higher/ lower by most participants (50% or more) in the majority of
clusters (four or more). As an example, the statement “I feel productive when I
write code” was scored higher by more than 50% of people in clusters C1, C2,
C3, C4, and C6. This was not the case for cluster C5, which is reported as
an exception, both in the first row and the row corresponding to C5. Other
statements scored higher by most developers in most clusters are “I feel productive
on a day with little to no meetings”, “I feel productive when I am happy”, and
“I feel productive when I have fewer interruptions”.

Table 3.1 also shows that some measurements (©) are of interest for reflection
on work (Q4) to most clusters. People in most clusters gave higher scores to
the time spent coding and the longest period focused on a task without an
interruption. The number of open applications and the inbox size received lower
scores overall. However, the table also highlights differences between the clusters
with respect to the measurements that participants consider to be interesting.
For example, the lone developers (C2) are interested in the number and duration
of interruptions. They are less interested in the list of applications used and web
sites visited. The balanced developers (C4) are interested in the tasks, the number
of interruptions, and the focus over time. They are less interested in the number
of emails sent and received. Several clusters are further related to each other
along specific aspects. For example, C1 and C2 are related in how they perceive
the productivity of social interactions. While social developers (C1) embrace
them, lone developers (C2) feel more productive when having uninterrupted work
alone. Further, clusters C3 and C6 are related, as focused developers (C3) are
more interested about working efficiently, while goal-oriented developers (C6) feel
the most productive when they get work done.

88 Chapter 3. Characterizing Software Developers by Perceptions of Productivity

Table 3.1: The Six Clusters/Personas from the Survey

 50% OR MORE GIVE HIGHER SCORES FOR

(TENDENCY: > 0.500)

50% OR MORE GIVE LOWER SCORES FOR

(TENDENCY: < –0.500)

Most clusters

(four or more)

I feel productive when I write code (except C5) ⚫

I feel productive on a day with little to no meetings (except

C5 and C6) ⚫ I feel productive when I am happy (except C2

and C5) ⚫ I feel productive when I have fewer interruptions

(except C5 and C6)

🔨 The time I spent coding (except C1)

🔨 The longest period focused on a task without an

interruption

I feel productive when I send more emails than usual (except C6)

⚫ I feel I had a productive work day when my email inbox is

emptier in the evening than in the morning (except C1 and C4) ⚫ I

feel productive when I visit social networks or news websites to do

a quick break (except C1 and C4) ⚫ If I have many program

windows open on my screen, it decreases my perceived

productivity ⚫ I feel productive on a particular day of the week,

e.g., on Wednesdays (except C5) ⚫ I feel more productive in the

morning than in the afternoon (except C3) ⚫ I feel less productive

after lunch compared to the rest of the day (except C3 and C6)

🔨 The number of open application windows (except C1 and C5)

🔨 The inbox size in the course of the day/week (except C2, C5)

Cluster C1:

The social

developer

Size: 62

I feel productive when I test or debug my code ⚫

I feel productive when I do code reviews ⚫ I feel productive

when I help my coworkers ⚫ I come early to work/work late

to get some focused work hours ⚫ I feel productive when I

work on one task at a time

🔨 Exception: The time I spent coding (tendency: 0.478)

Exception: I feel I had a productive work day when my email

inbox is emptier in the evening than in the morning

(tendency: –0.258) ⚫

Exception: I feel productive when I visit social networks or news

websites to do a quick break (tendency: –0.403)

🔨 Exception: The number of open application windows

(tendency: –0.370)

Cluster C2:

The lone

developer

Size: 64

I feel productive when I test or debug my code ⚫

I feel productive when I read fewer emails than usual ⚫

Background noise distracts me from my work ⚫ Exception:

I feel productive when I am happy (tendency: 0.203)

🔨 The number of interruptions I had

🔨 The duration of each interruption

I feel productive when I do code reviews

🔨 A list of applications I used

🔨 The websites I visited the most

🔨 Exception: The inbox size in the course of the day/week

(tendency: –0.438)

Cluster C3:

The focused

developer

Size: 54

I feel more productive in the morning than in the afternoon ⚫

I feel productive when I work on one task at a time

🔨 The tasks I worked on

🔨 The number of interruptions I had

🔨 My focus over the course of the day week

I feel more productive in the afternoon than in the morning ⚫

Exception: I feel less productive after lunch compared to the rest of

the day (tendency –0.155)

🔨 The number of emails I received

🔨 The number of emails I sent

Cluster C4:

The balanced

developer

Size: 50

I come early to work/work late to get some focused work hours ⚫

Exception: I feel I had a productive work day when my email

inbox is emptier in the evening than in the morning (tendency: –

0.180) ⚫ Exception: I feel productive when I visit social networks

or news websites to do a quick break (tendency 0.000)

Cluster C5:

The leading

developer

Size: 97

Exception: I feel productive when I write code (tendency:

0.309) ⚫ Exception: I feel productive on a day with little to

no meetings (tendency: –0.103) ⚫ Exception: I feel

productive when I am happy (tendency: 0.268) ⚫

Exception: I feel productive when I have fewer interruptions

(tendency: 0.247)

I feel more productive in the afternoon than in the morning ⚫

Exception: I feel productive on a particular day of the week,

e.g., on Wednesdays (tendency: –0.400)

🔨 Exception: The number of open application windows

(tendency: –0.447)

🔨 Exception: The inbox size in the course of the day/week

(tendency: –0.478)

Cluster C6:

The goal-oriented

developer

Size: 38

I feel productive when I work on one task at a time ⚫

Exception: I feel productive on a day with little to no

meetings (tendency –0.079) ⚫ Exception: I feel productive

when I have fewer interruptions (tendency: 0.447)

Exception: I feel productive when I send more emails than usual

(tendency 0.135) ⚫ Exception: I feel less productive after lunch

compared to the rest of the day (tendency: –0.211)

3.5 Discussion 89

3.5 Discussion

Understanding how developers perceive productivity is important to better
support them and foster productivity. The six clusters and their characteristics
provide relevant insights into groups of developers with similar productivity
perceptions that can be used to optimize the work and flow on the team and
the individual level. The differences between software developers’ preferred
collaboration and work styles show that not all developers are alike, and that
the cluster an individual or team belongs to could be a basis for tailoring actions
for improving their work and productivity.

On the team level, it might, for instance, be most beneficial to provide a
quiet, less interruption-prone office space to lone and focused developers (C2
and C3) and seat social developers (C1) in open offices. Similarly, a team
might benefit from an increased awareness about each members’ communication
preferences, to reduce ad-hoc meetings for lone and focused developers (C2 and
C3) or use more asynchronous communication where they can choose when to
respond to an inquiry. The group of developers can be further beneficial for
task assignment. For example, an exploration task for a new product that is
rather open without clear goals and that requires a lot of discussion might be
less suitable for a goal-oriented (C6), a lone (C2) or a balanced developer (C4).

On the individual level, developers might benefit from tailored user experi-
ences and feature sets for software development tools. For instance, a tool to foster
productive work and avoid interruptions could block emails and instant messaging
notifications for the lone developer (C2) while they are coding, but allow them
for the social developer (C1), similar to what was previously suggested [Agapie
et al., 2016]. Similarly, the code review or build experience could be adjusted
based on different productivity perceptions. In addition, the clusters could be
used for advice tailored to specific groups of developers, e.g.,, recommend the
focused developer (C3) to come to work early to have uninterrupted work time,
or suggest the balanced developer (C4) to take a break to avoid boredom and
tiredness [Epstein et al., 2016a]. The clusters can help to quantify the individual
productivity of developers more accurately, by considering what matters most to

90 Chapter 3. Characterizing Software Developers by Perceptions of Productivity

them and depending on their perceptions of productivity. For example, a leading
developer (C5) is likely feeling much more productive after a day with multiple
meetings spread over the day, compared to the focused developer (C3), who only
has little time to focus on the tasks in-between these meetings.

Overall, the identified clusters and the aspects that differentiate these clusters,
such as goal-orientation, single-task focus or socialness, are a first step towards a
set of “productivity traits” of developers. Similar to the big five personality traits
(OCEAN) [John and Srivastava, 1999] that help to understand other people’s
personality, the self-assessment along such productivity traits can provide useful
information for understanding oneself or other developers and for optimizing the
work individually as well as in teams.

3.6 Threats to Validity

External validity. Due to the selection of participants, as all work for the same
company, the results might not generalize to other software development contexts.
We tried to mitigate this threat by advertising the survey to professional software
developers in different product teams within Microsoft, at different stages in
their projects, and with varying amounts of experience; resulting in a more
diverse set of participants. By providing the survey questions, we encourage
other researchers and practitioners to replicate the study in other companies.

Construct validity. The selection of questions that we asked in the survey
also impacts the results. For example, questions about different dimensions of
productivity, might lead to a different clustering. We created the questions based
on factors that we identified in related work and from our previous experience with
surveying and interviewing developers about their perceptions and measuring
of productivity [Meyer et al., 2014]. The choice of clustering algorithm and
approach of using questions Q1 to Q3 to describe the inferred clusters might also
have influenced the results. Future work is needed to analyze the robustness and
completeness of the productivity statements and clusters.

3.7 Conclusion 91

3.7 Conclusion
Different to previous work that suggested numerous productivity measures and
found that perceptions of productivity can vary greatly between developers, our
research provides an exploratory first step into identifying commonalities and
underlying categories of developers’ productivity perceptions. Based on the
clustering of developers’ answers to productivity statements mentioned in related
work, we identified and characterized an initial set of six such categories and
discussed their potential to improve the work and flow of software developers
and their teams.

3.8 Acknowledgements
The authors would like to thank the study participants.

4
Today was a Good Day: The

Daily Life of Software
Developers

André N. Meyer, Earl T. Barr, Christian Bird, Thomas Zimmermann
Accepted in the 2019 IEEE Transactions on Software Engineering Journal,

Contribution: Data analysis and paper writing

Abstract
What is a good workday for a software developer? What is a typical workday?
We seek to answer these two questions to learn how to make good days typical.
Concretely, answering these questions will help to optimize development processes
and select tools that increase job satisfaction and productivity. Our work adds to
a large body of research on how software developers spend their time. We report
the results from 5971 responses of professional developers at Microsoft, who

94 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

reflected about what made their workdays good and typical, and self-reported
about how they spent their time on various activities at work. We developed
conceptual frameworks to help define and characterize developer workdays from
two new perspectives: good and typical. Our analysis confirms some findings
in previous work, including the fact that developers actually spend little time
on development and developers’ aversion for meetings and interruptions. It also
discovered new findings, such as that only 1.7% of survey responses mentioned
emails as a reason for a bad workday, and that meetings and interruptions are only
unproductive during development phases; during phases of planning, specification
and release, they are common and constructive. One key finding is the importance
of agency, developers’ control over their workday and whether it goes as planned
or is disrupted by external factors. We present actionable recommendations for
researchers and managers to prioritize process and tool improvements that make
good workdays typical. For instance, in light of our finding on the importance of
agency, we recommend that, where possible, managers empower developers to
choose their tools and tasks.

4.1 Introduction

Satisfied developers are more productive and write better code [Amabile and
Kramer, 2011; Graziotin et al., 2014a,b, 2015a]. Good workdays increase developer
job satisfaction [Sheldon et al., 1996]. Understanding what differentiates good
workdays from other days, especially atypical days, will help us make good
days typical. This work seeks just this understanding. Understanding typical
and atypical workdays will enable us to establish a baseline for comparison
with other developer workdays and make more informed decisions about process
improvements.

Development is a multistage process with complicated interactions across the
stages. These interactions mean that we cannot consider each stage in isolation,
but need consider the process as a whole. We need a holistic understanding of how
software developers spend their time at work. Without a holistic understanding,
one might think that developers, because they “develop”, spend most of their
time writing code. However, developers spend surprisingly little time with coding,

4.1 Introduction 95

9% to 61% depending on the study [Astromskis et al., 2017; Gonçalves et al.,
2011; Meyer et al., 2017a, 2014; Perry et al., 1994b; Singer et al., 2010; Xia
et al., 2017]. Instead, they spend most of their time collecting the information
they need to fulfill development tasks through meetings, reading documentation
or web searches, helping co-workers, and fulfilling administrative duties. The
conventional wisdom is that email is a big source of distraction and frustration.
We show that, to the contrary, email activity has little effect on a workday’s
perceived goodness (Section 4.5.1). Hence, focusing just on one development
activity can miss important opportunities for productivity improvements.

We have therefore set out to better understand how to make good days typical
to increase developer job satisfaction and productivity. Since a review of existing
research revealed no work that attempted to define or quantify what a good and
typical developer workday is, we studied developers’ workdays from these two
new perspectives 1. We conducted a large-scale survey at Microsoft and asked
professional software developers whether they consider their previous workday to
be good and typical, and related their answers and reflections to their self-reports
of the time spent on different activities at work. From now on, when we describe
good and typical developer workdays, we refer to developers’ self-reports; we
discuss the validity of this method in Section 4.4.3.

We received 5971 responses from professional software developers across
a four month period. From these responses, we developed two conceptual
frameworks to characterize developers’ good and typical workdays. When we
quantitatively analyzed the collected data, we found that two main activities
compete for developers’ attention and time at work: their main coding tasks
and collaborative activities. On workdays that developers consider good (60.6%)
and typical (64.2%), they manage to find a balance between these two activities.
This highlights the importance of agency, one of our key findings that describes
developers’ ability to control their workdays, and how much they are randomized
by external factors such as unplanned bugs, inefficient meetings, infrastructure
issues.

1We intentionally do not list our own definitions of good and typical workdays since one
aim of this work is to understand the characteristics of these workdays, and how developers
assess and define them.

96 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

Our work provides researchers and practitioners with a holistic perspective
on factors that influence developers’ workdays, job satisfaction and productivity.
In the paper, we discuss five main recommendations for managers to make
good workdays typical. Overall, it is important to remove and reduce obstacles
that block developers from creating value and making progress. Our findings
confirm and extend recent related work (e.g., [Graziotin et al., 2017; Mark et al.,
2008b; Meyer et al., 2014]), including that the most important impediments that
require attention are inefficient meetings, constant interruptions, unstable and
slow systems and tools, and administrative workloads. Conversely, some factors
believed anecdotally to be a problem, such as email, in fact have little effect
on how good or typical a workday is perceived to be. Since we found evidence
that meetings and interruptions are not bad overall as their impact depends
on the project phase, we conclude that they do not have to be minimized at
all times. For instance, we can better support the scheduling of meetings and
help find more optimal slots depending on the project phase or current workday
type. Also, improving developers’ perceptions of the importance and value of
collaborative work can reduce their aversion against activities that take time
away from coding. For example, managers can include developers’ contributions
to other teams or (open-source) projects when they evaluate them in performance
reviews. Finally, giving developers enough control over how they manage their
work time is important to foster job satisfaction at work. This can, for instance,
be achieved by allowing flexibility in selecting appropriate work hours, locations
of work, and tasks to work on.

The main contributions of this paper are:
• Two conceptual frameworks that characterize developers’ workdays
from two new perspectives: what makes developers consider workdays good
and typical.

• Results from 5971 self-reports from professional software developers
about how they spend their time at work. The number of responses
is an order of magnitude bigger than previous work and allows us to
replicate results from previous work at scale, and to uncover nuances and
misconceptions in developers’ work.

4.2 Research Questions 97

• Quantitative evidence identifying factors that impact good and typical
workdays for software developers and the relationships between these factors,
workday types, and time per activity.

• Recommendations that help researchers and practitioners to prioritize
process and tool improvements that make good workdays typical.

4.2 Research Questions

Our research is guided by the following main research question: What is a
good and typical workday for developers? We formulated subquestions to
approach the main research question from different perspectives. First, we want
to find out qualitatively what factors impact what developers consider as good
and typical in a workday:

RQ1: What factors influence good and typical developer workdays and how
do they interrelate?
While much related work has looked into how much time developers spend

on various work activities (Section 4.3), we want to investigate how developers
spend their time differently on days they consider good and typical:

RQ2: How do developers spend their time on a good and typical workday?
The large dataset of 5971 survey responses allows us to compare the time

a developer spends on different activities with other developers. We want to
group developers with similar workdays together and use other responses from
the survey to describe and characterize these groups as workday types:

RQ3: What are the different types of workdays and which ones are more
often good and typical?
As described in the related work section, developers spend a lot of time at

work in development unrelated activities, such as meetings and interruptions.
We want to further investigate the impact of these collaborative aspects on good
and typical workdays:

RQ4: How does collaboration impact good and typical workdays?

98 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

4.3 Related Work

Related work can broadly be classified into research on developers’ workdays
and factors that impact these workdays. To avoid repetitions in this thesis, we
present and summarize the related work in Section 1.6 of the synopsis. Specific to
this publication is previous work on how job satisfaction and happiness influence
developers’ work, which is why it is presented below.

4.3.1 Influence of Job Satisfaction on Developers’ Workdays

What is often left out from research about factors influencing workdays are human
aspects, such as developers’ job satisfaction and happiness. Job satisfaction is
a developer’s attitude towards the general fulfillment of his/her expectations,
wishes and needs from the work that he/she is performing. One important
factor that influences job satisfaction is the sum of good and bad workdays,
which we define as the degree to which a developer is happy about his/her
immediate work situation on the granularity of a single day. The developer’s
affective states, such as subjective well-being, feelings, emotions and mood, all
impact the assessment of a good or bad workday. Positive affective states are
proxies of happiness and were previously shown to have a positive effect on
developers’ problem solving skills and productivity [Amabile and Kramer, 2011;
Graziotin et al., 2014a,b; Müller and Fritz, 2015]. Similarly, aspects of the job
that motivate developers or tasks that bring them enjoyment were also shown
to lead to higher job satisfaction and productivity [Beecham et al., 2008; Kim
and Choe, 2019]. Self-reported satisfaction levels of knowledge workers [Mark
et al., 2016b], and more specifically, self-reported affective states of software
developers [Graziotin et al., 2015a], have further been shown to be strongly
correlated with productivity and efficiency. Similarly, developers’ moods have
been shown to influence developers’ performance on performing programming
tasks, such as debugging [Khan et al., 2011]. However, it is unclear how these and
other factors influencing developers’ workdays affect their assessment of whether
a workday is good or bad. Ideally, we would use this knowledge to increase the
number of good, positive workdays and reduce the negative ones.

4.4 Study Design 99

Previous psychological research connected positive emotions with good work-
days [Amabile and Kramer, 2011] and satisfaction [Fisher, 2000]. When studying
the relationship between positive emotions and well-being, hope was found to be
a mediator [Fredrickson et al., 2008; Ouweneel et al., 2012]. Positive emotions at
work were further shown to increase workers’ openness to new experiences [Kahn
and Isen, 1993], to broaden their attention and thinking [Fredrickson, 1998; Ouwe-
neel et al., 2012], and to increase their level of vigor and dedication [Ouweneel
et al., 2012], yielding higher work engagement and better outcomes. Sheldon
et al. [1996] have further shown that on good days, students feel they have higher
levels of autonomy and competence, which also results in better outcomes. One
goal of the reported study is to learn how developers assess good workdays and
what factors influence their assessment. Amongst other results, we found that on
good workdays, developers succeed at balancing development and collaborative
work, and feel having spent their time efficiently and worked on something of
value (Section 4.5.1).

There is also research indicating that good and typical workdays are related.
For example, knowledge workers were shown to be more satisfied when performing
routine work [Mark et al., 2014; Melamed et al., 1995]. Contrarily, a literature
review on what motivates developers at work, conducted by Beecham et al.
[2008], found that the variety of work (differences in skills needed and tasks to
work on) are an important source of motivation at work. Similarly, recent work
by Graziotin et al. [2017] found that one of the main sources of unhappiness are
repetitive and mundane tasks. In this paper, we also investigate the factors that
make developers perceive their workdays as typical (Section 4.5.2), and explore
the relationship between good and typical workdays (Section 4.6).

4.4 Study Design

To answer our research questions, we studied professional software developers at
Microsoft. Microsoft employs over thirty thousand developers around the globe
with more than a dozen development centers worldwide. The teams follow a
broad variety of software development processes, develop software for several

100 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

platforms, develop both applications and services, and target private consumers
and enterprise customers.

4.4.1 Survey Development Using Preliminary Interviews

To study developer workdays in a subsequent survey, we needed a taxonomy of
activities they pursue. We started with the taxonomy of activities by LaToza
et al. [2006] in their study of developer work habits. To validate and potentially
enrich this taxonomy, we contacted a random sample of developers at various
levels of seniority across many teams and scheduled half an hour to interview
them about their activities at work, conducting ten interviews in total. In each
interview, we first asked the developer to self-report and describe all of the
activities that they engaged in during the previous workday, including the type
of activity, the reasons for the activity, the time spent in the activity, and what
time of day the activity occurred. We encouraged them to use email, calendars,
diaries etc. as these act as “cues” [Tourangeau et al., 2000] and have been shown
to reduce interview and survey measurement error [Bellezza and Hartwell, 1981;
Bradburn, 2010; Hudson and Davis, 1972; Schwarz and Oyserman, 2001; Tulving
and Pearlstone, 1966]. We then asked interview participants to list additional
activities that they engage in, regardless of frequency or duration.

After gaining the approval of Microsoft’s internal privacy and ethics board,
we conducted interviews with developers until the data saturation point was
reached [Babbie, 2015]. That is, once new interviews yield no additional informa-
tion, further interviews will yield only marginal (if any) value [Guest et al., 2006].
The set of activities saturated after seven interviews, but we conducted ten to
increase our confidence that we had captured all relevant activities. Once we
had collected all of the activities, two of the authors grouped them into activity
categories using a card sorting approach [Spencer, 2009].

4.4.2 Final Survey Design and Participants

To increase our understanding of developers’ workdays and what makes them
good and typical, we broadly deployed a survey to developers at Microsoft. We
followed guidelines by Kitchenham and Pfleeger [2008] for surveys in software

4.4 Study Design 101

engineering and based the questions on our insights from the interviews. Our
survey comprised four main sections: (1) We first asked about demographics,
including team, seniority, and development experience. (2) Next we presented
respondents a list of activities (those we developed in the interviews) and asked
them to indicate how much time they spent in each activity on their previous
workday. We allowed respondents to write in additional activities if they had
an activity that was not covered by our taxonomy. (3) Third, we asked if the
previous workday was a typical day or not and if they considered it to be a good
day. In both cases, we asked them to explain why as an open response. (4)
Finally, we asked a number of additional questions about their day, including
how many times they were interrupted, and how many impromptu meetings
occurred. In an effort to minimize the time required to complete the survey and
avoid participant fatigue, only a random subset of the questions in the fourth
category were shown to each respondent. In total, each question in the fourth
category was answered by a random 10% subset of respondents. Our goal for
the survey was to take only five to ten minutes to complete. After the study was
completed, the online survey tool indicated that the median time to complete
the survey was just over seven minutes.

First, Microsoft’s ethics and privacy board reviewed our survey. To pilot
the survey and identify any potential problems, we then sent the survey to 800
developers over the course of one week with an additional question asking if any
aspect of the survey was difficult or confusing and soliciting general feedback.
After examining the responses, we made small wording changes for clarity and
also confirmed that our activity list was complete. Since the changes were very
minor, we also included the pilot responses in our analysis. In an effort to make
our study replicable, we provide the full survey in the supplementary material 2.

We then sent out 37,792 invitations to complete the survey by sending
approximately 500 invitations on a daily basis over the course of roughly 4
months. Developers were selected randomly with replacement, meaning that
it was possible that a developer would receive the survey multiple times over
the course of the study (though never more than once on a given day). Each

2Supplementary material: https://doi.org/10.5281/zenodo.1319812

https://doi.org/10.5281/zenodo.1319812

102 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

developer received a personalized invitation via email that explained who we
were and the purpose of the survey. To encourage honest responses and improve
participation rate, survey responses were anonymous. In the invitation email and
survey description, we explicitly stated that participation is voluntary, the survey
is completely anonymous, all questions are optional, and that only aggregated and
no individual data will be shared with collaborators at Microsoft. Participants
could also contact us in case they had any questions or concerns. Even though
the survey was anonymous, 43.8% of respondents choose to reveal their identity.
Among them, only 6.6% responded twice and none repeated more than once. In
Section 4.8, we discuss potential threats of this study design choice. We analyzed
the responses in the unit of a workday, not a developer.

We used a one sample continuous outcome confidence interval power analysis
to determine our required sample size [Daniel and Cross, 2018]. To achieve a
confidence level of 95% for a 5% confidence interval, the power analysis indicated
that we needed 385 responses. Since we were not sure ahead of time the exact
ways that we would be partitioning and comparing the responses, we aimed
for ten times that amount. In total, we sent 37,792 survey invitations and
received 5,971 responses. This is a response rate of 15.5%, which is in line with
response rates reported by other surveys in software engineering literature [Punter
et al., 2003]. From the 5,971 responses we collected in the survey, 59.1% of the
developers stated they are junior and 40.5% senior developers. 0.4% or 26 did
not specify their seniority level. Respondents reported an average of 10.0 years
(±7.48, ranging from 0.5 to 44) of experience working in software development.

4.4 Study Design 103

4.4.3 The Validity of Self-Reported Data

Collecting time-use data can be achieved through various methods, including
observations, automated tracking, and self-reporting. We decided to ask develop-
ers for self-reports, for the following reasons: self-reports (1) scale better than
observations to have a representative sample, (2) they collect a more holistic
view compared to using time tracking software that misses time away from the
computer (which was shown to be on average about half of a workday for devel-
opers [Meyer et al., 2017a]), and (3) since we investigate developers’ individual
perceptions of good and typical workdays, it makes sense to compare those percep-
tions with their own estimations of how they spend time. Further, self-reported
data is also common in large-scale time-use surveys, such as the American Time
Use Survey [Stinson, 1999]. However, self-reports on behaviors and time spent
are profoundly influenced by the question wording, format and context, and
can, thus, be unreliable [Schwarz and Oyserman, 2001]. To overcome these risks,
we carefully designed the self-report questions based on recommendations from
related work, especially Menon [1994]; Schwarz and Oyserman [2001], and we
test-run our questions first with ten interviewees before running the actual survey
study.

We intentionally asked respondents to self-report about the activities of
the previous workday instead of asking more generally. This was a conscious
methodological design decision based on the following reasons. First, the previous
day is recent, thereby increasing recollection accuracy. This holds true even if
the self-report is about the Friday the week before in case respondents answer on
a Monday. According to Tourangeau et al. [2000], by far the best-attested fact
about autobiographical memory is that the longer the interval between the time
of the event and the time of the interview or survey, the less likely that a person
will remember it. Second, a day is a short period of time to recall, and a large
body of research on surveying and recollection has found that when the reference
period is long, respondents tend to use heuristics and estimation of frequencies
rather than concrete occurrences [Blair and Burton, 1987; Bradburn et al., 1987;
Menon, 1994; Schwarz and Oyserman, 2001]. This can decrease validity, as
Menon [1994] found that “to the extent that behavioral frequencies are reported

104 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

based on inferential heuristics, they are judgements and are subjective”. Being
asked how many times one went out to eat last week, most people will likely
count concrete instances, whereas if the reference period is last year, they will
almost certainly estimate based on heuristics. Lastly, even if a respondent does
recount concrete events, larger reference periods can fall prey to a phenomenon
known as “telescoping” whereby a notable event is remembered as occurring more
recently than it actually did [Neter and Waksberg, 1964; Sudman and Bradburn,
1973]. By using the period of a single day, events are less likely to cross a “night
boundary” and be attributed to the wrong day [Bradburn et al., 1987].

We encouraged participants in the interviews and survey to use their email
clients, calendars, task lists, diaries etc. as “cues” [Tourangeau et al., 2000]
to improve their recall of their previous workday and reduce measurement
errors [Bellezza and Hartwell, 1981; Bradburn, 2010; Hudson and Davis, 1972;
Schwarz and Oyserman, 2001; Tulving and Pearlstone, 1966]. Finally, we asked
respondents to self-report the times spent in minutes rather than hours so that
they were forced to recall the events in more detail, as the unit of time in response
has shown to have an impact on recollection accuracy [LeBoeuf and Shafir, 2009;
Schwarz and Oyserman, 2001].

4.5 Conceptual Frameworks

In this section, we answer RQ1 and present the results from investigating
survey respondents’ self-reports of what made their previous workday good and
typical. We organized the factors influencing developers’ workdays as conceptual
frameworks and describe them using representative quotes and examples.

4.5.1 Developers’ Good Workdays

To identify factors that influence what a good workday is to developers, how
they relate to each other, and how important each factor is, we asked survey
respondents the following question: “Would you consider yesterday a good day?
Why or why not?”.

4.5 Conceptual Frameworks 105

Data Analysis

We coded the responses to the question to a binary rating of either good or
not good. Due to the formulation of the question, not good workdays could
either refer to an average or a bad workday. From now on, we describe not good
workdays as bad for better readibility. 5013 participants answered the question;
60.6% (N=3039) stated their previous workday was good and 39.4% (N=1974)
stated it was bad.

We qualitatively analyzed the cleaned responses from participants who pro-
vided an explanation for what made their workdays good or bad (21.1% did
not provide an explanation). We developed a coding strategy, applying Open
Coding, Axial Coding, and Selective Coding as defined by Corbin and Strauss’
Grounded Theory, as follows [Strauss and Corbin, 1998] 3. The first author Open
Coded the entire set of 4005 responses on what made participants’ previous
workday good or bad, using a quote-by-quote strategy where multiple categories
could be assigned to each quote. Responses that could not distinctively be
mapped to a category were discussed with the other authors. Before starting the
first Axial and Selective Coding iteration, the authors familiarized themselves
with the categories that resulted from the Open Coding step, by looking at 10-30
representative responses (i.e., quotes) per category and the number of responses
that the first author Open Coded to each category. We then discussed the
relationships between these categories in the team (usually with three or all four
authors present). This included drawing out the factors and their relationships
on a whiteboard, which we collected as memos. During that process, we heavily
relied on the quotes and regularly consulted them for additional context and
details about the identified relationships. The process was iterative, meaning
that whenever the Axial and Selective Coding steps resulted in updates to the
Open Coding categories, the first author re-coded participants’ responses, and we
did another iteration of Axial and Selective coding. After five iterations, we used
the memos, factors that resulted from the Axial Coding and high-level factors

3Since we applied all components of Straussian’s Grounded Theory approach in our analysis
but the outcome of this analysis was a conceptual framework instead of a theory, the most
accurate description of our analysis is that we used Grounded Theory as a “methodological
rationale” [Charmaz, 2014] or “à la carte” [Stol et al., 2016].

106 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

(that resulted from the Selective Coding) to create a conceptual framework to
characterize developers’ good workdays.

Conceptual Framework

From applying our coding strategy, we identified 11 factors impacting developers’
assessment of a good workday. We organized these factors into three high-level
factors, (1) value creation, (2) efficient use of time, and (3) sentiment. The first
two high-level factors were fairly obvious since respondents usually described
good workdays when they considered their work as meaningful and/or did not
waste their time on meaningless activities. A few important factors, however,
did not fit into these two high-level factors. They are related to respondents’
personal feelings and perceptions of their overall work, which we grouped as the
third high-level factor. Initially, we thought that quality is another important
factor, since some respondents described good workdays as days they improved
the quality of the software or did not break something. However, we realized
that these statements on quality were very rare (0.3% of responses) and that
respondents described them as one form of working on something of value.

In Figure 4.1, we visualize the conceptual framework for good workdays.
Each of the 11 factors (light gray) influences one of the three high-level factors
(dark gray), and they in turn influence whether developers perceive a workday as
good. The numbers in parentheses are counts for the number of responses that
we categorized into each high-level factor (total N=4005). Since the identified
factors are based on responses to an open question, the reported numbers and
percentages in this section should only serve to give a feeling about how prevalent
each factor is in respondents’ assessment of good workdays, rather than exact
measures (reality might be higher).

Now, we provide representative examples and quotes to describe the factors
and explain how we derived the conceptual framework based on survey responses.

Value Creation To decide whether their workday was good, respondents most
often evaluated if they were effective and if they created something of value
(68.0%, N=2725 of the 4005 responses to the question). Creating value, however,

4.5 Conceptual Frameworks 107

Figure 4.1: Conceptual framework for good workdays. The 3 high-level factors
are visualized as square layers; outer layers influence the inner layers.

Value Creation
(2725)

Perception
(372)

Efficient Use of Time
(2164)

Making

Progress

Learning

New

Things

Helping

Others

Constructive

Discussions

Meaningful

Work

Working

in Code Ability

to Work

Focused

Meeting

Expect-

ations

Time

Pressure

& Stress
Productivity Overtime

Good or Bad

Workday

means different things to developers. In 35.6% (N=1425) of the responses,
developers considered their workday good when they managed to produce some
form of outcome or accomplishment. Participants typically described a good
workday being one when they make a lot of progress on or complete their main
tasks (similar to previous work [Amabile and Kramer, 2011]):

“Made some good progress, [the] project is coming together, checked in some tests.”
- S105 [good]

Many responses (13.8%, N=553) mentioned that developers feel good about
their workday when they can spend parts of it working in code, rather than
on other activities, such as meetings, interruptions, or administrative tasks.
For 6.4% of all responses (N=257), creating value was described as working on
something developers deem important and meaningful enough to spend their
time on. This could be tasks that let the project progress, process improvements
that make the team more efficient, improving the quality of the product, or a
feature that they consider valuable for end users:

108 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

“I was able to help influence a decision that I thought was important.” - S1658
[good]

While meetings were often not considered a good use of their time (as discussed
in more detail in Section 4.5.1), 189 responses (4.7%) described a good workday
to be when developers participated in good, constructive discussions, when
important decisions on the project were made, or when connections could be
made that are valuable in the future:

“Meetings were productive, and we made some new connections with partners that
seem promising. I also had a good chat with a former manager/mentor.” - S483
[good]

Workdays where developers learned something new or that increased their
understanding of the project or codebase were also considered good, as 4.7%
(N=188) of the responses described learning a valuable investment into the
developers’ or project’s future. Similarly, days when developers could help a
co-worker to learn something new or unblock someone from a problem they
are stuck with was generally considered positive and rewarding (4.7%, N=188).
However, spending too much time helping others reduces the time they can spend
on making progress on their own tasks:

“I spent too much time helping team members and not enough on my scheduled
tasks.” - S1880 [bad]

Efficient Use of Time A second high-level factor for considering what a good
workday is, is how efficiently developers manage to spend their time (54.0%,
N=2164). A developer’s workday can be organized in various ways, and there
are numerous external and personal aspects that compete with each other for
the developer’s attention and time. This impacts whether a workday goes as
expected and influences the developer’s ability to focus on the main coding
tasks. Respondents mentioned that changes to their planned work or deviations
from their usual workday are often negatively perceived. Especially, unexpected,
urgent issues in a deployed system puts pressure on developers to resolve them
quickly (11.6%, N=464):

4.5 Conceptual Frameworks 109

“Started off with a live-site issue (still unresolved), then went to a [different]
live-site issue (still unresolved), then I actually got a few minutes to work on the
[main] task.” - S3158 [bad]

Interruptions from co-workers and distractions such as background noise in
open-plan offices were described in 13.8% (N=552) of the responses to negatively
influence developers’ ability to focus or work as planned:

“Too many interruptions/context switches. I need a continuous block of time to be
really productive as a coder, but I find I get distracted/interrupted more than I’d
like.” - S1066 [bad]

Similarly, long meetings or meetings spreading over the whole day, with very
little time in-between to work focused, were another regularly mentioned reason
(12.2%, N=491).

10.3% (N=411) of the remaining responses mentioned further reasons for bad
workdays that were not numerous enough to be coded into a new category. This
includes time lost due to infrastructure issues, outdated documentation, spending
too much time to figure out how something works and being blocked or waiting
for others (similar to [Graziotin et al., 2017]). Unlike what one might expect
from previous work [Barley et al., 2011; Dabbish and Kraut, 2006; Mazmanian,
2013], emails were surprisingly only rarely mentioned as a reason for not being a
good workday (1.7%, N=69).

Perception 9.3% (N=372) of all responses about good workdays were related
to developers’ positive or negative perceptions of their overall work; their produc-
tivity, time pressure, and working hours. For example, in 4.7% (N=187) of the
responses developers mentioned that they felt productive or unproductive on a
particular workday, and not specifying what factors contributed to their feeling.

“Yes, I was productive and felt good about what I’d done.” - S322 [good]

In 102 (2.5%) responses, developers considered workdays to be better when
they had a good balance of handling stress. This includes not trying to meet
a tight deadline and not having a too high time pressure:

110 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

“Considering we are not [on] a tight deadline, working in a relaxed fashion and
coding were quite enjoyable.” - S1654 [good]

Time pressure was recently also shown as a major cause of unhappiness of
developers [Graziotin et al., 2017]. 2.2% (N=87) of the responses described
workdays requiring to work overtime as bad. Reasons for what causes overtime
work are tight deadlines and having full task lists.

In Section 4.7, we make recommendations about how to leverage these results
to make good workdays typical.

4.5.2 Developers’ Typical Workdays

To learn how different factors impact developers’ assessment of typical workdays,
we asked survey respondents the following question: “Was yesterday typical?”.
To answer the question, they could either select yes or no. Respondents who
picked no were asked to provide a reason for their assessment in a free-form
textbox.

Data Analysis

5876 participants responded to the question; 64.2% (N=3770) considered their
workday as typical and 35.8% (N=2106) as atypical. 2008 of these 2106 partici-
pants (95.3%) then explained what made their workdays atypical. To qualitatively
analyze these factors and their relationships, we used the same coding strategy
that we described in Section 4.5.1 to characterize good workdays.

Conceptual Framework

Here, we describe how we developed the conceptual framework that characterizes
typical workdays. As respondents were very vocal about meetings and interrup-
tions to describe main reasons for atypical workdays, we initially thought that a
key component for the assessment is whether the developer has control over the
factor. However, from our discussions and after coding all responses, we realized
that the key component is the match between a developer’s expectation of how
a workday will be and how it actually was in reality. Externally influenced

4.5 Conceptual Frameworks 111

factors are just one factor to influence this match. If the mismatch is large,
developers consider the workday atypical. Also, we initially thought that the
resulting 7 high-level factors that we identified through our Axial and Selective
Coding all directly influence the assessment of typical workdays. However, we
noticed that they also influence each other: The current project phase impacts the
distribution over the different workday types. The workday type and subsequent
factors (external, tasks, location and personal) in turn influence the developer’s
expectation of how much time is spent in activities. We noticed that it was
usually not the activity itself that impacted the assessment, but whether the
developer spent more, less or about the same amount of time on it than usual and
what the developer expects. The relationships between the layers (i.e., factors)
were discovered through extensive discussions in the whole team during the Axial
Coding steps, where we discussed the categories that resulted from the Open
Coding process in relation with the representative quotes from each category.

In Figure 4.2 we visualize the conceptual framework, including the 7 high-
level factors as gray layers. The different gray shades show how each layer
influences the inner layers above. The counts in parentheses denote the number
of participants whose response we coded into the factor (total N=2008). We
explain the conceptual framework, by providing representative examples and
quotes to describe the factors.

Project Phase In 28.6% (N=575) of the responses, developers assessed their
previous workday as atypical, providing the current project phase as the reason.
In agile software development, an iteration usually starts with a planning and
specification phase, is followed by a development or quality/stabilization phase,
and then finalized with the release phase. Respondents, however, often perceived
their workdays as atypical when the phase was not development (22.3%, N=448).
Since non-development phases occur less frequently, are usually shorter, and
often let developers code less than in development phases, they are perceived
atypical:

112 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

Figure 4.2: Conceptual framework characterizing typical workdays. The main
factors are visualized as layers; the outer layers influence all inner layers.

Project Phase (575)

Type of Workday (83)

Main Work Tasks (145) Personal (43)

Location (116)External (678)

Time Spent on Activities (1040)

≈
Typical or Atypical

Workday

Expectation

Reality

“We are in the planning phase now and each day is different: There is a lot more
focus on evaluations, specs, meetings during this phase. This would significantly
differ from our workday during coding milestones.” - S2243

These non-development phases are perceived as “slower”, which is why devel-
opers spend more time on activities that usually fall short during development
phases, such as training, evaluating frameworks, writing documentation, or
working on low-priority tasks.

Since developers often describe meetings and interruptions as unproductive,
prior work concluded that they are bad overall [Bailey et al., 2001; Czerwinski
et al., 2004; González and Mark, 2004; Mark et al., 2008b; Meyer et al., 2014;
Parnin and Rugaber, 2011]. We are refining these earlier findings with our results
that suggest the impact of meetings and interruptions on productivity depends
on the project phase. Respondents described that during phases of specification,
planning and releases, they are common, but constructive:

4.5 Conceptual Frameworks 113

“In planning stage, not development stage. Spent way more time in meetings than
normal, but they were productive meetings.” - S1762

As some teams at the studied organization do not employ separate teams
dedicated to operations, developers also have to take part in a servicing phase,
usually for about one week every couple of weeks. During that week, they are
on-call for urgent and unexpected issues, which respondents often also regarded
as atypical:

“I am currently on-call as [an] incident manager. It was typical for on-call rotation,
but that happens only once every 12 weeks.” - S2447

While many respondents described the current phase to be atypical, few
mentioned that the amount of time they spent on certain activities was unusual
for the phase they are currently in. For example, spending an unusual high
amount of time with coding during a planning phase felt atypical.

Type of Workday The workday type is another factor that influences whether
a developer considers a workday as typical. While this factor is not as prominent
as the project phase that influences it, the workday type was emphasized in 4.1%
(N=83) of the responses. Certain teams or individuals organize their work into
days where they mainly focus on a single activity, such as coding, bug-fixing,
planning or training. During these days, developers avoid pursuing activities
that distract them from their main activity, such as emails or meetings. Specific
days where the team would not schedule any meetings were mentioned most
prominently:

“We’re not allowed to schedule meetings on Thursdays.” - S419
“On Mondays I have a late night coding night.” - S159

These well-appreciated “no-meeting days” were often scheduled during de-
velopment phases to allow developers to focus primarily on making progress on
their coding tasks.

External In 33.8% (N=678) of the responses, developers mentioned external
factors they have little control over to contribute to an atypical workday, as they
often divert developers from making progress on their main tasks towards other

114 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

responsibilities. Among these, meetings were most often mentioned (20.5%,
N=411), especially when they are unplanned, very long or concerning an unusual
topic:

“I had literally no meetings and spent the entire day refactoring legacy code. That
is unusual.” - S2394

Lack of knowledge, e.g., when having to work on a task in an unfamiliar
codebase or with a new framework, is another factor that can make workdays
atypical (3.9%, N=78), as developers have to stop working on their tasks and
spend time learning or attending trainings about a topic:

“I was working in a very unfamiliar system; so I spent a lot of time struggling
with how to do basic things like building. Normally, I work in a system that I’m
familiar with.” - S1490

Fixing infrastructure problems or performing maintenance (e.g., internet
issues, installing updates) were described as the reason for an atypical workday
by 3.9% (N=78) of the responses:

“Hardware maintenance/setup is not part of my typical responsibilities. I don’t
think that I am typically randomized to this extent.” - S1306

Similar to our finding on what makes a good workday, emails were only
rarely mentioned as a reason for an atypical workday (1.4%, N=28). Finally,
respondents mentioned other factors that make their work more fragmented and
divert them away from their main work tasks, including long or topic unrelated
interruptions (3.6%, N=72), and being blocked on a task and having to wait for
others (0.5%, N=11).

Location As developers typically work at the organization’s location on-campus,
any other location they work on is often considered atypical (5.8%, N=116):

“I worked from home and was able to make much better progress than normal.” -
S4679

When developers are not working in their usual location, they either work
from home, at a client’s or partner’s office, or they are traveling to their team’s
remote location in case it is distributed. Working from home was uniformly

4.5 Conceptual Frameworks 115

described as a well-appreciated opportunity to get tasks done with minimal
interruptions, as it is one way to regain some control over the external factors
that can randomize a workday.

Main Work Tasks 7.2% (N=145) of responses mentioned the task itself impacts
whether they consider workdays typical. This is the case for unusual tasks,
such as preparing for a demo or presentation, very easy tasks, such as routine
work, or very challenging tasks:

“I am not normally prepping for a presentation.” - S1554

As most development teams at the studied organization plan work by assigning
work items in Scrum meetings, unplanned and urgent tasks are another reason
for sidetracking developers:

“No, there was a high priority issue. Normally I would try to spend a little bit
more time coding.” - S5057

These unplanned tasks impact developers’ workload and can make it harder
to meet deadlines, which often results in longer than usual workdays:

“16 hour work days are insane, a big chunk of time was spent troubleshooting a
sideways deployment to [product].” - S5309

Personal Few of the responses (2.1%, N=43) used personal factors to explain
what made a workday atypical. The only personal reasons that were mentioned
are health related, e.g., feeling sick or having a doctor’s appointment. After
identifying the importance of personal factors for the framework about good
workdays, we more closely inspected responses describing typical and atyipcal
workdays from that perspective. No respondent described personal factors such
as mood, sleep quality or the ability to focus as factors that impact typical
workdays.

This surprised us, since previous work identified that these more personal
factors can impact the workday organization, focus and productivity of knowledge
workers [Althoff et al., 2017; Czerwinski et al., 2004; Graziotin et al., 2017, 2014a],
and thus, presumably, also their assessment of a typical or atypical workday.

116 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

As respondents did reveal personal factors when characterizing good and bad
workdays, and as we ensured respondents anonymity (see Section 4.4.2), reasons
for the lack of personal details in this question might be that the survey setting
did not prompt them explicitly enough to reflect about personal factors or the
other identified factors are more prevalent and have a bigger influence on their
assessment of a typical workday.

Time Spent on Activities Finally, the high-level factors described above influ-
ence how much time developers spend on different activities. For example, during
the development phase, developers typically spend more time writing code, days
with many unplanned meetings reduce the time spent on main coding tasks, and
unplanned urgent tasks could force a developer to work overtime. We catego-
rized all cases where 51.8% (N=1040) of the responses contained descriptions of
spending more or less time than usual on a certain activity and visualized the
top 5 in Table 4.1. On atypical workdays, respondents mostly reported spending
more than usual time in meetings and debugging or fixing bugs.

4.5.3 Interrelationship Between Good and Typical Days

In our analysis of related work, we found an interconnection between job sat-
isfaction, goodness, routine, typicality and productivity. First, we developed
conceptual frameworks to better understand these factors in isolation. Now, we
describe our main qualitative observations on the interrelationship between good
and typical workdays, and present quantitative results in Section 4.6.

One key finding is the importance of control, i.e., developers’ ability to
control their workday and whether it goes as planned/expected or is disrupted
by external factors, such as unplanned bugs, inefficient meetings, or infrastructure
issues. While our findings replicate some results from previous work, they help to
better understand nuances in developers’ work and sort out misconceptions. For
example, when we looked more closely at why developers are very vocal about
meetings and interruptions being one of the main detriments to productive
work, we found that during non-development phases, they are better accepted
and more productive. Another insight from studying factors that influence good

4.6 Quantitative Analysis 117

and typical workdays was that the time spent on email (as opposed to email
content) are rarely the reason for bad or atypical workdays. Finally, developers
described personal factors only very rarely as reasons for their assessment. This
might suggest that developers are not very aware of how their private lives, health
and mood impact their work, or they chose not disclose these factors since they
are too personal.

Table 4.1: Top 5 activities where respondents reported spending more or less
than usual time in on atypical workdays. Percentages are based on all 2008
responses to the question.

Activity Category More than Usual Less than Usual
Meetings 10.2% (N=205) 5.8% (N=116)
Debugging/Fixing Bugs 6.5% (N=131) 1.3% (N=27)
Coding 3.9% (N=78) 5.1% (N=102)
Planning/Specification 1.6% (N=33) 0.2% (N=5)
Learning/Tutoring 1.5% (N=30) 0.1% (N=3)

4.6 Quantitative Analysis
We provide a quantitative analysis of the relationship between good and typical
workdays, by comparing them with the time spent in activities (RQ2), with
workday types (RQ3), and with collaborative activities (RQ4). Each analysis
reuses the same binary ratings for good and typical workdays that were used to
develop the conceptual frameworks.

Table 4.2: Contingency table for the relationship between good and typical
workdays (WD). The left number in a cell indicates the percentage and the right
number in a cell the total number of responses.

Typical WD Atypical WD Total
Good WD 39.8% 1989 20.8% 1037 60.6% 3026
Bad WD 23.5% 1175 15.9% 796 39.4% 1971
Total 63.3% 3164 36.7% 1833 100% 4997

118
Chapter4.

Today
was

a
Good

D
ay:

The
D
aily

Life
ofSoftware

D
evelopers

Table 4.3: Mean and relative time spent on activities on developers’ previous workdays (WD). The left number in
a cell indicates the average relative time spent (in percent) and the right number in a cell the absolute average
time spent (in minutes).

Activity Category
All Typical WD Atypical WD Good WD Bad WD

100% (N=5928) 64% (N=3750) 36% (N=2099) 61% (N=3028) 39% (N=1970)
pct min pct min pct min pct min pct min

Development-Heavy Activities
Coding (reading or writing code and tests) 15% 84 17% 92 13% 70 18% 96 11% 66
Bugfixing (debugging or fixing bugs) 14% 74 14% 77 12% 68 14% 75 13% 72
Testing (running tests, performance/smoke testing) 8% 41 8% 44 7% 36 8% 43 7% 38
Specification (working on/with requirements) 4% 20 3% 17 4% 25 4% 20 4% 20
Reviewing code 5% 25 5% 26 4% 23 4% 24 5% 26
Documentation 2% 9 1% 8 2% 10 2% 9 2% 8
Collaboration-Heavy Activities
Meetings (planned and unplanned) 15% 85 15% 82 17% 90 14% 79 18% 95
Email 10% 53 10% 54 10% 54 9% 52 10% 57
Interruptions (impromptu sync-up meetings) 4% 24 4% 25 4% 22 4% 22 5% 28
Helping (helping, managing or mentoring people) 5% 26 5% 27 5% 25 5% 26 5% 28
Networking (maintaining relationships) 2% 10 2% 9 2% 12 2% 11 2% 10
Other Activities
Learning (honing skills, continuous learning, train-
ings)

3% 17 3% 14 4% 22 3% 19 3% 16

Administrative tasks 2% 12 2% 11 3% 14 2% 11 3% 15
Breaks (bio break, lunch break) 8% 44 8% 44 8% 45 8% 44 8% 45
Various (e.g., traveling, planning, infrastructure set-
up)

3% 21 3% 17 5% 27 3% 19 4% 25

Total 9.08 hours 9.12 hours 9.05 hours 9.17 hours 9.15 hours

4.6 Quantitative Analysis 119

4.6.1 Correlation Between Typical and Good Workdays

First, we created a contingency table (see Table 4.2) to investigate the correlation
between good and typical workdays. A Fisher’s exact test shows strong statistical
significance (p=0.00001324, 95% confidence interval). This means that although
typical and atypical workdays are both more likely to be considered good than
bad, the percentage of typical workdays that were considered good (62.9%, good
typical days over all typical days) is higher than the percentage of atypical
workdays that were considered good (56.7%, good atypical days over all atypical
days) to a statistically significant degree. Similarly, from studying emotions
developers express when writing and commenting issue reports, Murgia et al.
[2014] found that surprise, which could be more often experienced on atypical
workdays, is associated with negative events.

4.6.2 Time Spent on Activities at Work

Previous research on how developers spend their time at work did not consider
whether developers think they were good and typical, or whether they were
an unusual representation of work [Gonçalves et al., 2011; Meyer et al., 2017a,
2014; Perry et al., 1994b; Singer et al., 2010]. Hence, optimizing processes and
tools without this knowledge is risky, since we might draw wrong conclusions
and optimize for bad or atypical workdays. For example, from previous studies
we could get the impression that reducing the email workload of developers
is of very high importance. However, our study showed that while developers
spend time with emails, they do not consider them an important factor that
makes workdays bad or atypical. Hence, to answer RQ2 we asked participants
to self-report the time they spent on various activities at work and related them
to their assessments of good and typical workdays.

Data Analysis. In the survey, respondents filled out a table with the minutes
spent in predefined activity categories. They also had the option to add other
activity categories in case they were missing. For the quantitative analysis, we
only used responses where the total time spent was greater than zero and smaller
than 24 hours. We then calculated the mean and relative time spent per activity

120 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

category for all respondents, for respondents who reported they had a typical
or atypical workday, and respondents who reported they had a good or bad
workday.

Results. In Table 4.3, we visualize the mean number of minutes and relative
time (in percent) participants reported having spent on each activity on their
previous workday. Column 2 lists an average over all participants, while Columns
3 and 4 consider typical and atypical workdays, and Column 5 and 6 consider
good and bad workdays. In total, developers spent on average slightly more
than 9 hours at work on their previous workday. While this includes an average
of 44 minutes non-work time spent at lunch and with bio breaks, the time
spent at work is nonetheless higher than the often considered 8 hours for a
regular workday (e.g., [Claes et al., 2018]). Since developers at the studied
organization can freely organize their work hours, this might be an indication
of developers working overtime, an observation that was previously made for
German and Finnish workers who had autonomy over their working time and
worked overtime [Kandolin et al., 2001; Lott and Chung, 2016]. Overall, the
self-reported 9 hours spent at work is in line with our previous work, where we
found that developers’ work activities span across 8.5 hours on average, identified
through computer interaction time tracking [Meyer et al., 2017a].

Activities are grouped into Development-heavy, Collaboration-heavy and Other
activities. A few activities could be grouped into multiple groups, e.g., pair
programming and code reviewing. Hence, we define a development-heavy activity
as an activity usually performed by the developer alone, and a collaboration-
heavy as an activity that usually involves multiple people. Activities categorized
as Other are usually not directly related to development tasks or working with
other people.

Most of the time is spent with development-heavy activities, such as reading or
writing code (15%, 84 mins), debugging or fixing bugs (14%, 74 mins) and testing
(8%, 41 mins). Developers also spent time collaborating with other, including
meetings (15%, 85 mins), emails (10%, 53 mins), and helping or mentoring others
(5%, 26 mins).

Comparing quantitative self-reports on time spent on activities across good

4.6 Quantitative Analysis 121

and typical workdays confirms the previously established qualitative characteris-
tics of good and typical workdays (see Sections 4.5.1 and 4.5.2). Both, on good
and typical workdays, developers spend considerably more time with
development related activities. For example, the time spent with reading and
writing code is 22 minutes higher on typical (compared to atypical) workdays and
30 minutes higher on good (compared to bad) workdays. On typical workdays,
developers also spend slightly less time in meetings, with planning or working on
requirements, and with learning or in trainings. And on good workdays, they
spend about half an hour less in collaborative activities, than on bad workdays.

4.6.3 Workday Types

Looking at average relative time spent in activities for all responses results in
the impression that good/bad and typical/atypical workdays are very similar
overall. However, respondents described that not all workdays look the same, e.g.,
when they have no-meeting days, and that this type of workday often influences
whether they consider a workday as typical or atypical. Since we did not prompt
them to discuss workday types, only 4.1% (N=83) of respondents mentioned it.
To evaluate similarities and trends in developers’ workdays and to answer RQ3,
we reused our dataset (see Section 4.6.2) to group responses together where
respondents reported spending their time at work with similar activities. We
then used responses to other questions to characterize these groups as workday
types.

Data Analysis. To identify groups of developers with similar workdays, we
run a cluster analysis following steps:

1. For the clustering, we used respondents’ self-reports of the relative time
spent in each activity category. The data cleaning process is the same as
described before in Section 4.6.2. To group the respondents, we used the
Partitioning Around Medoids (PAM) clustering algorithm by [Kaufman
and Rousseeuw, 1987] in the pamk implementation from the fpc package4

in R. We varied the number of clusters (k) from one to twenty. The pamk
4https://cran.r-project.org/web/packages/fpc

https://cran.r-project.org/web/packages/fpc

122 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

function is a wrapper that computes a clustering for each k in the specified
range and then returns the clustering with the optimum average silhouette.
In our case, the optimal number of clusters was k = 6.

2. To describe the inferred six clusters, we used responses to other questions
from the survey, including developers’ assessments of good and typical
workdays, their experience (senior versus junior developer (as defined by
the organization position) and number of years of development experience)
and their office environment (private versus open-plan office).

3. Finally, we used the cluster descriptions to develop workday types.

Results. In Table 4.4, we present the resulting six clusters, the amount
of time developers in each cluster spend on different activities, and additional
factors to describe the clusters. Clusters 1 to 3 (C1-C3) are development heavy
workdays, while clusters 4 and 5 (C4-C5) include more collaborative aspects. In
the following, we describe the clusters as workday types and characterize them
considering the factors mentioned above. We also name each workday type to
make referencing them easier in the paper.

On a “Testing Day” (C1), developers overall spend considerably more time
with testing compared to the other days. As testing often requires to also debug
and fix code, they also spend more time with coding and debugging compared
to other not development heavy days (C4-C6). On “Testing Days”, developers
spend more time learning new things than the other days. The majority of the
developers in this cluster (in our sample, 71%) are junior developers, with 66%
considering it a typical workday and 63% a good workday respectively. On a
“Bugfixing Day” (C2) developers spend significantly more time debugging or
fixing bugs (almost 3 hours on average). Similar to the “Testing Day”, mostly
junior developers are experiencing this workday type (69%), and the developers
in this cluster generally thought it was fairly typical (65%) and good (60%). A
“Coding Day” (C3) is a workday where developers spend a lot of their time
reading and writing code, on average about 2.3 hours, and is perceived as good by
more developers than the other workdays (74%). This workday type has a higher
chance to be perceived as typical, with 72% considering their previous coding

4.6 Quantitative Analysis 123

day as typical. 65% of the developers in this cluster are juniors and most of the
developers in this cluster do not sit in private offices (60%). The “Collaborating
Day” (C4) entails spending more time on collaborative activities, especially in
meetings, with emails and helping others, than on development heavy days (C1-
C3). Meetings, however, account only for about half the time than on a ‘Meeting
Day”. This workday was only perceived as good by half the respondents (50%)
and is experienced more often by senior (59%) than junior (41%) developers.
On a “Meeting Day” (C5), developers spend on average more than 4 hours
or 46% of their workday in meetings. The majority of developers in this cluster
are senior developers (71%). Also, time spent with emails is higher than on
workdays with a bigger focus on development (C1-C3). Overall, developers
who experience a meeting workday, spend on average just about one and a
half hours in development related activities. Only 50% of the developers in
this cluster perceived their previous “Meeting Day” as typical. As only 8.5%
of the respondents (N=504) belong to this cluster, developers are less likely to
experience a meeting day. Finally, on a “Various Day” (C6), developers spend
more than 4 hours with activities mapped to the category Various. This includes
setting up the infrastructure, working in support, and on a deployment. With
only 1.6% (N=94) respondents belonging into the cluster it is the rarest workday
type, the longest workday, and the workday that was most often considered as
atypical and bad.

We make the following observations based on the results:

• The number of good workdays in each cluster confirms again that many
developers feel more positive on workdays they can work alone and focus
most of their time on development related activities.

• What developers consider a good workday also varies with their seniority.
Similarly, senior developers experience more atypical days than junior
developers.

• Developers experience development heavy workdays (C1-C3) as more typical
than the other workdays.

124 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

• Senior developers have more days that include collaboration, such as
meetings, planning and specification and are less likely to have development-
heavy workdays (C1-C3).

• Overall, average workday lengths are very similar, differing only up to half
an hour.

• On average, respondents who experienced a development heavy workday
(C1-C3) have about 3 years less development experience.

4.6.4 Collaboration

Previous work has described interruptions as one of the biggest impediments to
productive work [Bailey et al., 2001; Czerwinski et al., 2004]. Also, meetings
have been shown to account for a big chunk of a developer’s workday, but their
usefulness and value is often questioned [Meyer et al., 2014]. Since most of the
time developers spend in development-unrelated activities is of a collaborative
nature, we wanted to better understand how the two most frequent collaborative
aspects, meetings and interruptions, impact good and typical workdays (RQ4).
Note that we did not include the project phase in this analysis, as respondents
were not specificly asked to report it in the survey.

Data Analysis. To study how collaboration impacts developers assessments
of good and typical workdays, we selected 8 aspects related to interruptions and
meetings. For each aspect, we asked a random 10% subset of respondents to
self-report the time needed, total number, or percentage. After cleaning the data
and removing a few outliers (<1% per aspect), we correlated the aspect with
respondents’ assessments of good and typical workdays. To test whether there is
a significant statistical difference between each, good and typical workdays, and
the aspect, we use non-parametric Wilcoxon signed-rank tests (95% confidence
interval). We corrected all p-values for multiple hypothesis testing, using the
Benjamini-Hochberg correction [Benjamini and Hochberg, 1995]. In the results
that follow, we describe the relationship as significant if the p-value is less than
0.05. In these cases, we include the p-value of the Wilcoxon test inline.

4.6
Q
uantitative

Analysis
125

Table 4.4: The six workday type clusters. Each column corresponds to a cluster and each row either to the time
spent in activities or factors considered to describe the clusters. The left number in a cell indicates the average
relative time spent and the right number in a cell the average absolute time spent.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
Testing Day Bugfixing Day Coding Day Collaborating Day Meeting Day Various Day
24% (N=1451) 23% (N=1344) 22% (N=1319) 21% (N=1216) 8% (N=504) 2% (N=94)
pct min pct min pct min pct min pct min pct min

Time Spent in Activities
Development-Heavy Activities
Coding 11% 63 11% 61 37% 137 7% 37 6% 32 6% 35
Bugfixing 11% 59 32% 170 10% 56 6% 31 4% 20 6% 36
Testing 16% 87 7% 36 6% 35 2% 13 2% 11 4% 25
Specification 4% 19 1% 6 2% 10 9% 47 3% 18 1% 4
Reviewing code 5% 25 4% 23 4% 23 6% 33 3% 14 3% 19
Documentation 3% 16 1% 4 1% 6 2% 9 1% 8 1% 3
Collaboration-Heavy Activities
Meetings 12% 65 9% 50 9% 50 22% 121 46% 248 7% 41
Email 8% 45 10% 52 8% 42 13% 73 12% 66 8% 44
Interruptions 4% 24 4% 21 4% 19 6% 33 3% 19 3% 20
Helping 4% 24 4% 21 4% 20 8% 44 5% 26 2% 14
Networking 3% 14 1% 8 1% 7 2% 12 2% 12 1% 7
Other Activities
Learning 7% 36 2% 10 2% 13 2% 11 2% 10 2% 9
Administrative tasks 2% 12 2% 10 1% 7 4% 22 2% 11 2% 8
Breaks 8% 44 9% 50 8% 43 8% 44 7% 37 7% 40
Various 2% 19 3% 14 3% 14 3% 20 2% 15 47% 262
Factors Describing the Clusters
Workday was good 63% 60% 74% 50% 48% 40%
Workday was typical 66% 65% 72% 61% 50% 40%
Works in a private office 46% 47% 40% 60% 57% 75%
Is a junior developer 71% 69% 65% 41% 29% 56%
Years of Experience 8.9 8.8 9.4 12.0 13.0 12.0
Total time spent (in hrs) 9.2 8.9 9.0 9.1 9.0 9.4

126 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

Results. The mean values for each aspect, presented for good, typical and
combined workdays, are shown in Table 4.5. We present some key observations:

(4.5a) Overall, developers had on average 4.66 interruptions on their past
workday. Surprisingly, on typical workdays, the number of interruptions are
significantly higher than on atypical workdays (p < 0.001). There is also
strong evidence (i.e., a significance correlation) that interruptions are lower on
good workdays (p < 0.001). Developers who perceived their workday as good
experienced about one interruption less than developers on a bad workday.

(4.5b) Previous work has found that developers typically take around 15
minutes to resume after an interruption [Van Solingen et al., 1998]. In our
survey, respondents self-reported it took them on average less than ten minutes.
Overall, the time needed to resume an interruption is similar, independent of
whether it is perceived as good and typical.

(4.5c) The longest period developers could work on code without an
interruption was 47.3 minutes, on average. On good (p < 0.001) and typical
(p = 0.002) workdays, developers get significantly longer chunks of uninterrupted
coding time. On atypical and bad workdays, it is on average around 40 minutes.

(4.5d) Developers see meetings often as an inefficient use of time. While the
results presented above indicate developers are preferring coding over meetings,
they still consider the majority of meetings as useful, independently of whether
it was a good and typical day. The percentage of useful meetings has a significant
impact on if a workday is considered good (p = 0.035), but not on if it was
typical. On atypical workdays, meetings are generally seen as a bit more valuable,
probably because they are more irregular and less routine meetings.

(4.5e) Impromptu sync-up meetings are short interruptions from co-
workers in the developers’ office to answer a question. Respondents experienced
on average about two impromptu sync-up meetings on their previous workday.

(4.5f) Unplanned meetings are more formal and less ad-hoc than im-
promptu sync-ups, but are not stored as calendar appointments like planned
meetings. Developers rarely have unplanned meetings, overall less than one a
day. On good workdays, the number of unplanned meetings is significantly lower
than on bad days (p = 0.002).

4.7 Making Good Days Typical 127

Table 4.5: How meetings and interruptions influence good and typical workdays.
Significant relationships between the aspect and good or typical workdays are
visualized in bold (α<0.05).
Aspect Typ-

ical
Atyp-
ical

Good Bad Total

a) Number of Interruptions 4.80 4.43 4.30 5.24 4.66
b) Minutes needed to resume work after an inter-
ruption (in mins)

8.55 8.81 8.19 9.29 8.64

c) Longest period of uninterrupted coding time (in
mins)

50.3 42.4 52.9 39.3 47.3

d) Percentage of useful meetings 56.6% 61.7% 61.2%54.8% 58.5%
e) Number of impromptu sync-ups 2.15 2.30 2.15 2.50 2.20
f) Number of unplanned meetings 0.61 0.63 0.51 0.84 0.62
g) Total time spent in unplanned meetings (in mins) 21.1 22.1 16.6 28.8 21.5
h) Percentage of total time spent in meetings 17.7% 22.7% 18.4%21.4% 19.5%

(4.5g) When they do happen, unplanned meetings account for slightly more
than a quarter hour on good and almost half an hour on bad workdays. On these
bad workdays, unplanned meetings take significantly more time (p = 0.001).

(4.5h) Of the total time spent at work, developers spent around 20% in
(and preparing) meetings. On good and typical workdays, the percentage
of time spent in meetings is slightly lower (only significant for good workdays,
p = 0.002). The highest percentage of time spent in meetings is on days developers
perceive as good and atypical, suggesting that the unusual meetings (those that
happen on atypical days) are often considered as constructive and valuable (see
Section 4.5.1).

4.7 Making Good Days Typical

Our findings contribute new knowledge about factors that impact good and
typical workdays and how developers’ work differs on these days. In this section,
we discuss how researchers and managers can apply them to make good days
typical and to improve developers’ productivity and job satisfaction in the
workplace.

128 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

4.7.1 Optimizing Developer Workdays

Our results provide insights into factors that impact how developers’ good and
typical workdays are perceived and how they define them. This allows individuals,
team leads and managers to prioritize and target actions that improve
processes and tools, and ultimately productivity. For example, many develop-
ers are unhappy when they work on mundane or repetitive tasks [Graziotin et al.,
2017]. On the contrary, time pressure and deadlines were found to be major
causes for stress [Mark et al., 2014; Melamed et al., 1995] and unhappiness [Grazi-
otin et al., 2017]. Our results suggest ways to reduce these bad days and make
good days typical (i.e. more routine). Generally, it is advisable to minimize
administrative tasks and infrastructure issues, and reduce interruptions and
meetings. Developers gain back time they can spend on their coding tasks and
increase their job satisfaction. This is especially important for junior developers,
who tend to spend most of their time with development-heavy activities such
as coding, testing and bugfixing. During these tasks, they need to be able to
focus for long chunks of time, without interruptions. Uninterrupted work might
be easier to achieve in smaller offices shared with only a few colleagues, rather
than the currently omnipresent open-plan offices. During phases or days that
require a lot of collaboration, coordination and many meetings (e.g., planning,
specification and release phase), the team could move to an open-plan office. To
accommodate these changing needs for office space, teams could switch with
another team that is working with reversed phases.

Our results further suggest ways to make atypical days good, e.g., by
working from home on tasks that require a lot of attention and focus, by scheduling
no-meeting days, by planning to do little coding during planning phases, or by
using slow times (e.g., project wrap-up) for side-projects. Working from home was
previously shown to increase knowledge worker job satisfaction, since it increases
flexibility of working at one’s own pace, allows planning active working hours at
times of higher focus and motivation, and in quieter work environments [Rožman
et al., 2017; Ruostela et al., 2015; Van Der Voordt, 2004]. Days on which meetings
are grouped together allow teams to collaborate, discuss and plan intensively,
and days when no meetings are scheduled allow teams to work more focused,

4.7 Making Good Days Typical 129

reducing context-switching and interruptions [Donohue, 2018; Lange, 2008].
Common in these examples is that individuals and teams organize their work to
be atypical on purpose, which made these days more positive and productive. In
our analysis of workday types (see Section 4.6.3), we found that senior developers
experience more atypical workdays than junior developers. This is likely the
case because they experience more “collaborating days” and “meeting days”,
making it more difficult to plan out and control one’s workday. Besides the
beforementioned approaches on making meetings more efficient, other research
focused on approaches that reduce the amount of time senior developers need
to spend with randomization and helping out, leaving more time to work on
their main coding tasks. This includes expert-finding systems to interrupt fewer
people with inquiries (e.g., [Balog et al., 2006; Mockus and Herbsleb, 2002]),
more efficiently exchanging knowledge and learnings (e.g., [Fritz and Murphy,
2010; Robillard et al., 2010]), increasing team awareness (e.g., [Biehl et al., 2007;
Jakobsen et al., 2009; Sarma et al., 2003]), and more efficiently dealing with
emails (e.g., [Mark et al., 2016a; Sappelli et al., 2016]). Finally, spending more
quality time on activities most described as good days (e.g., coding and learning)
could further make senior developers’ often randomized, atypical workdays good.

From our work, it remains unclear how much consistency over days devel-
opers expect and how often they appreciate non-routine atypical workdays. We
could imagine that occasionally breaking the routine will also avoid boredom
and will make work more exciting overall. However, the ever-changing project
phases and various activities pursued at work might already be sufficient to
avoid routine. Having now a better understanding of the factors that influence
developers’ assessments of good and typical workdays, future work could ex-
plore how the company culture, development processes, developers’ gender (e.g.,
GenderMag [Burnett et al., 2016]) and personas (e.g., Developers’ Productivity
Perception Personas [Meyer et al., 2017c]) influence how pronounced these
factors are. For example, standardized questionnaires from psychology could be
leveraged to include perspectives on developers’ personality (e.g., BFI-2 [Soto
and John, 2016]), impulsivity (e.g., UPPS [Whiteside and Lynam, 2001]) or
ability to self-control (Cognitive Absorption Scale [Agarwal and Karahanna,

130 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

2000]). Getting more insights into the distinctness of these factors could help
individuals, teams and managers to prioritize improvements at the workplace
better.

4.7.2 Agency: Manage Competition for Attention & Time

Our results highlight that developers face a constant competition for attention
and time between their main coding tasks (i.e., individual productivity)
and collaborating with their team (i.e., team productivity). While
they generally understand the importance of team collaboration, not every
developer perceived it as an efficient and productive use of their time. Developers’
workdays are often disrupted by activities they have little control and autonomy
over (e.g., meetings scattered over the day, interruptions from co-workers asking
for help). These disruptions fragment developers’ workdays, allowing them to
only spend little time focused on their coding tasks before switching to the
next topic [González and Mark, 2004; Meyer et al., 2017a]. This increases
frustration and tensions in the team. Thus, being able to freely control how
to best organize one’s workday and whether it goes as planned/expected or
is disrupted by external factors is important. For example, allowing developers
to “veto” meeting requests can help avoid scattering meetings across the workday
that leave very little time to make progres in-between them. In Sociology, this
notion is known as agency, and describes “the capacity of individuals to act
independently and to make their own free choices” [Barker, 2003]. The finding
of the importance of agency is in line with previous work in psychology, in which
increased autonomy in a high-variety task led to increased satisfaction [Dodd
and Ganster, 1996]. Similarly, a study with students showed that higher levels of
autonomy are related to higher well-being and better outcomes [Sheldon et al.,
1996]. Agency is related to the concept of daily job crafting, the self-induced
changes that employees make in their job demands and resources to meet and/or
optimize their work goals [Tims et al., 2012]. These changes can have positive
impacts on motivation [Petrou et al., 2012] and performance [Tims et al., 2012].

Previous work has suggested a plurality of approaches that allow knowledge
workers to better manage their own workdays and improve collaboration. This

4.7 Making Good Days Typical 131

includes avoiding interruptions from co-workers at in-opportune moments [Züger
et al., 2017], reducing distractions from communication channels [Mark et al., 2018;
Storey et al., 2017], having flexible work hours [Origo and Pagani, 2008], improving
the scheduling of meetings between timezones [Tang et al., 2011; Whittaker and
Schwarz, 1999], and making distributed meetings more efficient [Babar et al., 2008;
Sutherland et al., 2007]. Since these examples are founded in other knowledge
work settings, future work could study how to adapt them to the software
engineering domain and allow developers to better control and optimize their
time.

Our work refines previous work that found developers consider most meetings
and interruptions as unproductive. We found that during non-development
phases, they are common and (usually) productive. We should actively
work on reducing interruptions and meetings during the development phase (and
on development-heavy days), and encourage them at times when collaboration
is most crucial, such as phases of planning/specification, testing and release.
Finally, we learnt that senior developers appreciate collaboration generally more
than junior developers, suggesting the value of collaboration changes with
experience. This finding is in line with recent work that found motivation and
job satisfaction at work is changing as individuals age [Rožman et al., 2017].

4.7.3 Evaluation of Contributions at Work

The competing interests between individual productivity and team productivity
also highlight potential issues in how we evaluate success and measure
productivity at work. Our findings indicate that developers who reflect about
successful work mostly consider the produced output, and value collaborative
work much lower. This is why on good and typical days, the majority of developers
reported making a lot of progress on their coding tasks and producing a lot of
output (49.4%), rather than focussing on contributing something meaningful
(6.4%), learning something new (4.7%), or helping a team-mate to make progress
(4.7%). Initial discussions with a few project managers at the corporation
confirmed this interpretation. According to them, many teams are starting to
consider developers’ support to other team-members, and contributions to other

132 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

teams and even external (open-source) projects when evaluating the performance
in job reviews and salary discussions. This is similar to reports from industry,
where developers are not only evaluated by their managers but also their peers, or
where developers can recommend a small monetary bonus to another developer
for great work done [Goler et al., 2019].

While our study with software developers showed that learning something new
was rarely (4.7%) mentioned as a reason for a successful day, a study focusing
on Korean knowledge workers found that career satisfaction is predicted by
an organization’s learning culture and goal orientation [Joo and Park, 2010].
According to Hofstede and Arrindell [1998]’s dimension of masculinity/femininity,
masculine cultures focus more on competition and success, while more feminine
ones on doing what one likes. These examples suggest that reflecting about
(successful) work needs to be considered as a separate variable in future work, to
better understand how differences in company culture, job profile, goal orientation
and gender could impact how developers reflect about their work.

4.8 Threats to Validity

4.8.1 External Validity

The main threat to the generalizability and validity of our results is the external
validity. Since our survey was conducted at only one large organization, it is
unclear how representative our results are of the views of all software developers,
especially from smaller companies or open-source projects. Microsoft employs
over thirty thousand developers, who are working on various projects targeting
private and commercial users, and at different stages of their projects. Survey
respondents work in teams of different sizes, at various locations, using varying
technology and processes. Many teams in the organization have come from
acquisitions of smaller companies or startups, and their development processes
and tools have remained largely untouched. According to Microsoft’s yearly
diversity report 5, the distribution of developers in the United States (US) was the

5https://www.microsoft.com/en-us/diversity/inside-microsoft/default.aspx

https://www.microsoft.com/en-us/diversity/inside-microsoft/default.aspx

4.8 Threats to Validity 133

following in 2018: 50.9% Caucasian, 39.2% Asian, 4.5% Hispanic, 2.8% African-
American, and 2.6% other. 19.9% identify as female, 80% male, and 0.1% as other.
At the time of taking our survey, all participants resided in the greater Seattle area
in Washington state, US. Thus, while all of the developers we studied are part of
a single organization, we are confident to achieve some level of external validity
and generalizability, based on the variation in paricipants’ context, environment,
culture, and experience, as well as the large sample size. Finally, single-case
empirical studies have been shown to contribute to scientific discovery [Flyvbjerg,
2006]. Nonetheless, future work could consider additional variables, such as
the company culture and size, and developers’ gender, personality, and goal
orientation.

4.8.2 Construct Validity

In Section 4.5.1, we described how we analyzed the survey responses using
methods common in the Grounded Theory approach by Strauss and Corbin
[1998]. One potential threat could be that the Open Coding step was performed
by one author only. To reduce bias, we discussed 10-30 representative quotes for
each coded category as a team, and collectively mapped all responses that could
not distincitvely be mapped to a category. All subsequent steps, including Axial
and Selective Coding and the development of the conceptual frameworks, were
performed iteratively with three or all four authors present.

4.8.3 Internal Validity

Selecting developers randomly with replacement when sending out the survey
invitations via email might pose a risk to internal validity. Since all responses
were anonymous, we cannot know the exact number of people who took the
survey more than once and how much time was between the two responses. We,
however, expect the number to be low, since from the 43.8% of participants
who voluntarily revealed their identity, only 6.6% responded twice, and no one
repeated more than once. Since the survey invitations were sent out over the
course of 4 months, we further also expect the number of responses from the

134 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

same participant within subsequent days to be very low. Thus, we believe that
the large amount of participants (N=5971) reporting at random workdays and
varying stages of their projects is a fairly representative sample of how developer
workdays look like. Future work could consider how developers’ decision to
participate in the survey and more importantly, their answers are affected by
their experiences of the previous workday and their personality. For example,
previous work showed that well-being on the preceding day can affect the well-
being on the subsequent day [Sheldon et al., 1996] and, hence, could have affected
our respondents’ self-reports of how good their previous workday was. Similarly
and with respect to personality, people who are generally more likely to respond
to surveys are conscientious, agreeable and open to new experiences [Marcus
and Schütz, 2005; Rogelberg et al., 2004; Tuten and Bosnjak, 2001]. Our sample
might not accurately represent developers who do not fit into these personality
groups.

Another limitation of our study could be that we studied developers’ workdays
based on their self-reports and only on one day (and in a few cases two days)
per developer. We discuss our rationale behind the study design in detail in
Section 4.4. We are confident of the soundness of our design, also because our
results replicate comparable findings (e.g., time spent on activities and the high
cost of interruptions and meetings) from previous work that applied differing
methods (e.g., observations, tracking).

The survey structure and formulation might be source of further risks to
internal validity. For example, asking developers whether they consider their
workday as good and typical after asking them to self-report their time spent at
work might have framed participants. Another potential framing threat is the
positioning of the demographic questions in the beginning of the survey, which
might have caused a Stereotype Threat [Steele and Aronson, 1995]. For example,
a developer working in an open-plan office and not liking this might have been
reminded of the fact when answering the survey. Future work should redress this
threat by placing the demographic questions at the end of the survey [Danaher
and Crandall, 2008; Stricker and Ward, 2004].

We also acknowledge that typicality and goodness of workdays are not binary

4.9 Conclusion 135

ratings in reality, as several factors could influence the assessment of a workday
to be rather typical or rather atypical, for example. However, for the sake
of first identifying the factors that influence what contributes to a good and
typical workday, we decided that using a dichotomous variable makes more
sense. Dichotomization was also described as a standard practice in empirical
research, to avoid nominal scale violations [Kitchenham and Pfleeger, 2008]. In
the interviews, we noticed that there is no consensus between whether writing
code and debugging is the same activity. Hence, in the survey, we asked developers
to distinguish between writing code and debugging when reporting the time
spent. An additional control question revealed that 58% distinguish between
writing code and debugging, while 42% do not.

4.9 Conclusion

We extend previous work on understanding developer workdays by adding two
new perspectives: what makes a workday good and typical. We report on
aspects that characterize what makes developers consider workdays good and
typical, and how managers can leverage them to make good workdays typical.
On good workdays, developers make progress and create value on projects they
consider meaningful, and spend their time efficiently, with little randomization,
administrative work and infrastructure issues. What makes a workday typical is
primarily assessed by the match between developers’ expectations and the reality.
Amongst other aspects, this match is heavily influenced by the time they spend on
different activities, external factors they have little control over, and the current
development phase. Since developers often complain meetings and interruptions
are unproductive, prior work concludes that they are bad overall. Surprisingly,
we find that their impact on productivity and job satisfaction depends on the
development phase: during specification/planning and release phases, they are
common, but constructive. Another key finding is the importance of agency,
control over one’s workday and whether it goes as planned and expected, or
is disrupted by external factors. Our work provides a holistic perspective on
how developers think these aspects influence their workdays and helps prioritize

136 Chapter 4. Today was a Good Day: The Daily Life of Software Developers

process and tool improvements. For example, one unexpected finding is to
de-emphasize email, contrary to what was suggested by related work.

Our results stem from a large-scale survey with 5971 responses, where profes-
sional software developers reflected about what made their workdays good and
typical, and where they self-reported how they spent their time on the previous
workday. In contrast to related work using primarily automated tracking, by
using self-reports we capture unanticipated events in each developer’s own classi-
fication at scale. Our scale also gives us the resolution to uncover nuances, e.g.,
what makes developers happy and satisfied varies with their seniority.

4.10 Acknowledgements
We thank our study participants for their participation. We also thank the
anonymous reviewers and our editor for their valuable feedback.

5
Detecting Developers’ Task

Switches and Types

André N. Meyer, Manuela Züger, Chris Satterfield, Katja Kevic,
Gail C. Murphy, Thomas Zimmermann, Thomas Fritz

In submission at FSE 2019,
Contribution: Study design and execution, participant recruitment, tool
development, data collection, partial data analysis, and paper writing

Abstract

Developers work on a broad variety of tasks during their workdays and constantly
switch between them. While these task switches can be beneficial, they can also
incur a high cognitive burden on developers, since they have to continuously
remember and rebuild the task context–the artifacts and applications relevant
to the task. Researchers have therefore proposed to capture task context more

138 Chapter 5. Detecting Developers’ Task Switches and Types

explicitly and use it to provide better task support, such as task switch reduction
or task resumption support. Yet, these approaches generally require the developer
to manually identify task switches. Automatic approaches for predicting task
switches have so far been limited in their accuracy, scope, evaluation, and the
time discrepancy between predicted and actual task switches. In our work,
we examine the use of automatically collected computer interaction data for
detecting developers’ task switches as well as task types. In two field studies–a 4h
observational study and a multi-day study with experience sampling–we collected
data from a total of 25 professional developers. Our study results show that
we are able to use temporal and semantic features from developers’ computer
interaction data to detect task switches and types in the field with high accuracy
of 87% and 61% respectively, and within a short time window of less than 1.6
minutes on average from the actual task switch. We discuss our findings and
their practical value for a wide range of applications in real work settings.

5.1 Introduction

To successfully perform their work, software developers are required to constantly
switch between a broad variety of tasks, such as implementing a new feature,
answering an email or attending a meeting, with each task requiring its own
set of artifacts and applications [González and Mark, 2004; Meyer et al., 2017a;
Perry et al., 1994a]. These constant task switches result in a high fragmentation
of work, requiring developers to continuously interrupt and later resume their
tasks and to relocate the artifacts and applications that are relevant to fulfill
the task at hand. Subsequently, developers face a higher cognitive burden, lower
performance, and a higher error rate [Bailey et al., 2001; Murphy et al., 2005].

To support developers in their fragmented task work, researchers have pro-
posed approaches that explicitly capture task context–artifacts and applications
relevant to the task–and that use this information to then support users by
preventing interruptions, easing task resumption, or by recommending relevant
artifacts and applications [Bragdon et al., 2010a; Card and Henderson Jr, 1986;
Dragunov et al., 2005; Kersten and Murphy, 2006; Sahm and Maalej, 2010; Smith

5.1 Introduction 139

et al., 2003]. While studies have shown that the explicitly captured task context
can lower the cognitive burden on developers and increase productivity [Bragdon
et al., 2010b; Kersten and Murphy, 2006], all of these approaches require some
form of manual interaction of the developer to identify task boundaries, some-
thing that developers often forget to do in practice after using such an approach
for a few days [Kersten and Murphy, 2006].

To address this issue, few researchers have proposed approaches to auto-
matically detect switches between tasks, varying mainly in the features used
(e.g., user input or application based), and the method applied (e.g., supervised
versus unsupervised) [Mirza et al., 2011a; Shen et al., 2009, 2007]. Yet, the
evaluations performed to study these approaches are often fairly limited in terms
of the tasks and number of participants, and the results show that it is very
challenging to achieve high prediction accuracy of task switches without too
many false positives [Mirza et al., 2011a; Nair et al., 2005; Stumpf et al., 2005],
or that one has to accept a high deviation in time of 3 to 5 minutes between
predicted and actual task switches [Shen et al., 2009, 2007, 2006]. Since these
approaches focus on detecting task switches within the IDE only, they are not
capturing non-development work, which can account for 39% up to 91% of the
time developers spend at work [Astromskis et al., 2017; Gonçalves et al., 2011;
Meyer et al., 2017a; Perry et al., 1994a; Singer et al., 2010].

In our research, we extend this work and investigate (RQ1) whether we can
automatically detect task switches of professional software developers in the
field, based on temporal and semantic features as extracted from their computer
interaction inside and outside the IDE. We were also interested in classifying
the type of task a developer is working on, since the better we understand the
context of a task, the better we can support developers. To the best of our
knowledge, there has been only one approach so far that looked at the automatic
classification of developers’ activities on a task level [Bao et al., 2018]. Yet, their
examination was limited to specific development activities only, and did not
consider the whole range of non-development tasks that developers are working
on, such as administrative or planning tasks. In our work, we investigate the
task types that software developers are working on more holistically, and explore

140 Chapter 5. Detecting Developers’ Task Switches and Types

(RQ2) how accurately we can predict them in the field.
To address our research questions, we performed two field studies: one with

12 professional developers in which we observed their work over a 4-hour period
and logged the task switches and types without interrupting their work; and
one with 13 professional developers in which we regularly prompted participants
to self-report their task switches and types over a period of about 4 workdays
and conducted a post-study questionnaire. By varying the study methods, we
wanted to achieve a higher generalizability of our results and ensure that we
take into account the effects of self-reporting while also capturing the breadth
of developers’ tasks over multiple days. For both field studies, we also collected
the participants’ computer interaction using a monitoring tool that we installed
on their machine and that was running in the background. From the computer
interaction data, we extracted a total of 68 temporal and semantic features.
Our analysis of the data shows we can use the automatically logged computer
interaction data to train machine learning classifiers and predict task switches
with a high accuracy of 87%, and within a short time window of less than 1.6
minutes of the actual task switch. Our analysis further shows that we are able
to predict task types with an accuracy of 61%, yet that this accuracy varies a lot
by task type. The features based on mouse and keyboard interaction generally
hold the highest predictive power, while the lexical features we extracted from
the application names and window titles have the least predict power in our
approach.

Overall, our work extends previous work with an approach that uses a broader
range of features, is evaluated in a field-study with 25 professional developers,
and achieves higher accuracy and less delay than previous work. Our results
provide evidence for the potential to automatically detect software developers’
task switches and types in the field. This opens up opportunities for providing
developers with task support tools that lower the burden of fragmented work
and constant task switching, by reducing task switching and facilitating task
resumption, and by greatly complementing existing task support by freeing the
developer from the laborious manual task boundary identification.

5.2 Related Work 141

The primary contributions of this paper are:

• An approach to automatically detect task switches and types based on
developers’ computer interaction that is not limited to the IDE.

• Two field studies with 25 professional developers demonstrating our ap-
proach’s potential to detect task switches and types with high accuracy
and within a small time window in the field.

• An evaluation of the predictive power of various computer interaction
features, including semantic and temporal ones, and a comparison of
individually trained models versus a general model.

5.2 Related Work

Work related to our research can broadly be grouped into research that examined
the detection of task switches and task types, and into approaches to support task
focused work. Based on previous work Bruegge and Dutoit [2004]; González and
Mark [2004]; Kersten and Murphy [2006]; Meyer et al. [2014]; Mirza et al. [2011b];
Vasilescu et al. [2016a], we defined a task as a well-defined work assignment with
a specific goal that people divide their work into, such as fixing a bug, or preparing
for a team-meeting. A task switch occurs, when a person switches between two
different tasks.

5.2.1 Task Switch Detection

Several researchers have explored the detection of task switches mostly for general
knowledge workers. These approaches mainly differ in the features they used
to identify the task boundaries or switches, ranging from semantic features to
temporal features, the method they use, unsupervised versus supervised, and
the way they evaluated their approach. One of the most prominent approaches
is by [Shen et al., 2009, 2007, 2006; Stumpf et al., 2005] that is mainly based
on semantic features and supervised learning. They reused an approach, Task-
Tracer [Dragunov et al., 2005], that allows users to manually indicate the tasks

142 Chapter 5. Detecting Developers’ Task Switches and Types

they are working on, and additionally tracks their application interactions in the
background, including window titles. Based on the assumption that windows
of the same task share common words in their titles, they create vectors from
window titles and identify task switches based on a textual similarity measure
using the users’ previously declared tasks and supervised learning. After the first
version, Shen et al. [2006] further improved their approach to reduce the number
of false positives and to be able to predict task switches online [Shen et al., 2009,
2007]. Their evaluation is based on a small set of two users and counts a task
switch as accurate if it falls within a 4 to 5 minute time window of a real switch,
which is a very coarse measure, given the frequent task switching in today’s
environment that happen every few minutes [González and Mark, 2004; Meyer
et al., 2014]. Based on the assumption that switches between windows of the
same task occur more frequently in temporal proximity than to windows of a
different task, Oliver et al. [2006] examined a temporal feature of window switches
within a 5 minute time window in addition to semantic features and using an
unsupervised approach. An evaluation based on 4h of a single participant, they
achieved a precision of 0.49 and recall of 0.72. Researchers have also used other
temporal features, in particular, the frequency of window events, to determine
task switches. Under the assumption that users navigate between windows more
frequently when they switch tasks, as opposed to during a task, Nair et al. [2005]
developed a system that calculates window event frequency based on fixed 5
minute time windows. An evaluation with 6 participants resulted in an accuracy
of 50%. Mirza et al. [2011a] relaxed the constraint of a fixed time window, used
adjusted frequency averages and studied the various approaches with 10 graduate
students. They found that their approach improved the accuracy and achieved
an overall accuracy of 58%. Overall, previous research has shown that detecting
task switches is difficult, even for very short periods of time and in controlled
environments. In our work, we focus on software development work and extend
these approaches by including and examining both, semantic and temporal fea-
tures of window events as well as user input features, and by conducting two
studies with professional software developers.

5.2 Related Work 143

Only little research has been performed on task switch detection in the
software development domain and all of this research has focused solely on
software development tasks within the IDE. As one of the first, Robillard and
Murphy [2004] proposed to use program navigation logs to infer development
tasks and they built a prototype, however, without evaluating it. In 2008, Coman
and Sillitti focused on splitting development sessions into task-related subsections
based on temporal features of developers’ access to source code methods and
evaluated their approach with 3 participants over 70 minutes each, finding that
they can get close to detecting the number of task switches, yet the point in
time when the task happens is a lot more difficult [Coman and Sillitti, 2008].
Zou and Godfrey [2012] replicated Coman and Sillitti’s study in an industrial
setting with six professional developers and found that the algorithm detects
many more task switches than the ones self-reported by the participants with an
error of more than 70%. Finally, on a more fine-grained level, Kevic and Fritz
examined the detection of activity switches and types within a change task using
semantic, temporal and structural features. In two studies with 21 participants,
they found that activity switches as well as the six self-identified activity types
can be predicted with more than 75% accuracy [Kevic and Fritz, 2017]. Different
to these approaches, we focus on all tasks a developer works on during a day,
not just the change tasks within the IDE.

5.2.2 Task Type Detection

Researchers also examined detecting the type of task or activity a person is
working on. Most similar to our approach for task type detection is Koldijk et al.
[2012]. They investigated the use of features over a fixed 5 minute time window,
using mouse and keyboard input, application (switches) and the time of day. They
tried to predict one of 12 task types that they identified in a survey, e.g., read
email, write email, plan, program, search information, and create visualization.
The results of a field study with 11 researchers and an average of 10 hours of
data per participant shows that the prediction is very individual and that a
general classifier does not work well. Mirza et al. [2015] focused on classifying
users’ desktop interactions into six higher level activity types: writing, reading,

144 Chapter 5. Detecting Developers’ Task Switches and Types

communicating, web browsing, system browsing and miscellaneous. They used
temporal, interaction-based (application window events), and semantic features
calculated over a 5 minute time window. In a 6 hour field study with five
participants and a controlled lab study, they found that they can predict the
activity category for each of these 5 minute windows with high accuracy (81%)
and that interaction-based features work best. Researchers have also explored
biometric features, such as Hassib et al. [2017] who used Electroencephalography
to classify the task type according to cognitive load, but without looking at
specific task types. In our work, we extend these approaches by not fixating
on fixed time windows of 5 minutes but actually detecting the switches and by
evaluating them with professional developers in the field.

We have been able to find only very little research on predicting task types
for software developers. To the best of our knowledge, the only approach that is
similar to our work is by Bao et al. [2018]. In their work, they automatically track
low-level computer interaction data (user input and application usage) and use a
Condition Random Field (CRF) based approach to segment the data and infer
one of six development activities–coding, debugging, testing, navigation, search,
or documentation–similar to our task types. An analysis of data collected from
ten developers over a week shows that CRF is able to classify the activity with
73% accuracy. We extend the approach by focusing on all activities developers
perform during their workday, not just development, and by examining when
developers switch between different tasks.

5.2.3 Task Support

While there is a vast number of approaches to support specific development
activities, such as code search, code review or debugging, only little research
has looked into supporting developers with understanding and managing their
tasks and the frequent switches between them. Several researchers have therefore
proposed to explicitly model development tasks and to capture task contexts–
artifacts and applications relevant to a task–to support developers in their task
work, in particular by recommending relevant artifacts [Kersten and Murphy,
2006; Sahm and Maalej, 2010], identifying related tasks [Maalej et al., 2017],

5.3 Study Design 145

easing the resumption of interrupted tasks and switching between them [Bragdon
et al., 2010a,b; Card and Henderson Jr, 1986; Dragunov et al., 2005; Kersten
and Murphy, 2006; Oliver et al., 2008; Rattenbury and Canny, 2007; Robertson
et al., 2000; Smith et al., 2003], or scoping queries and recommending workflow
improvements [Murphy et al., 2005]. Early approaches to support task switching,
such as virtual workspaces [Card and Henderson Jr, 1986] or the GroupBar [Smith
et al., 2003], provide interfaces that allow the user to manually group artifacts
and applications with respect to tasks. The approaches Mylyn by Kersten and
Murphy [2006], and TaskTracer by Dragunov et al. [2005], both explicitly capture
task context by automatically recording user interactions within the IDE or
the desktop environment respectively, given the user manually indicates the
start and end of a task. While several of these approaches have great potential
to support developers in their task work, they require some form of manual
interaction to identify the task boundaries, something that developers often
forget to do after using such a tool for a while [Kersten and Murphy, 2006].
Researchers have therefore examined how to best aid developers in identifying
task boundaries retrospectively [Safer and Murphy, 2007], looked into more
lightweight approaches for supporting task resumption through cues and without
specific task context [Parnin and DeLine, 2010b], or explored the automatic
mining of task contexts to support window switching [Oliver et al., 2008] and
grouping files [Rattenbury and Canny, 2007]. Overall, an automatic and real-time
task switch detection has thereby the potential to complement and significantly
improve the value of most of these existing approaches for developers.

5.3 Study Design

To investigate the use of computer interaction data for predicting task switches
and types, we conducted two field studies, a 4-hour observational study and a
multi-day study with experience sampling, with a total of 31 professional software
developers initially. The observations and self-reports served as the ground truth
of participants’ task switches and types, while we additionally gathered computer
interaction data to extract features for our predictions. In both studies, we used

146 Chapter 5. Detecting Developers’ Task Switches and Types

Figure 5.1: Overview of study design and outcomes.

the same definitions of tasks, task switches and types which we also shared with
the participants. A brief overview of our study design is presented in Figure 5.1.

5.3.1 Study 1 – Observations

In our first study, we observed the work of 12 participants over a period of 4
hours to gather a richer understanding of developers’ task switches and types
they work on.

Procedure. For the observations, the observer, either the first or second author,
followed a detailed protocol that we developed before the study. The very
first observation session was performed by both observers at the same time. A
cross-check of the two observation logs showed an inter-rater agreement of 97%,
suggesting a high overlap of observing the same tasks and task switches.

Before each observation session, the observer explained the study purpose and
process to the participants and asked them to sign a consent form, to install a

5.3 Study Design 147

monitoring tool that tracks participants’ computer interaction, and to describe
the tasks they were planning to work on during the observation. The observer
also introduced herself to nearby colleagues and asked them to ignore her as much
as possible, and collaborate with the observed participant as they would normally
do. After that, the observer placed herself behind the participant to prevent
distractions, while still being able to see the screen contents on the participant’s
computer. Finally, the observer started the actual observation session and asked
the participant to continue their work as usual.

We observed participants for a total of four hours each on a single workday:
two hours before and two after lunch. For the observations, we followed the
protocol of a structured observation session by Mintzberg [1980]. The observer
wrote in an observation log 1 each time the participant switched from one task to
another. Each entry in the observation log consists of a timestamp, a description
of the reason for the task switch and a description of the task itself. We inferred
tasks and their details from the active programs and their contents on the screen,
as well as discussions participants had with co-workers. After each session, the
observer validated the observed tasks and task switches with the participant, by
going through the list of observed tasks and accompanying notes and modifying
mistakes made during the observation.

Participants. We recruited 14 participants through professional and personal
contacts from two large-sized and one medium-sized software companies. We
excluded two participants for which we were not able to observe a sufficient
amount of task switches (less than 10). Of the remaining 12 participants, 1 was
female and 11 were male. Throughout the paper, we refer to these participants
as P1 to P12. Our participants had an average of 10.8 (±7.4, ranging from 1 to
20) years of professional software development experience and were working in
different roles: 8 participants identified themselves as individual contributors and
4 as developers in a leading position. All participants resided either in Canada
or the United States.

1We used our own observation logging tool: https://github.com/casaout/
ObservationStudyTool

https://github.com/casaout/ObservationStudyTool
https://github.com/casaout/ObservationStudyTool

148 Chapter 5. Detecting Developers’ Task Switches and Types

Monitoring Tool. To collect computer interaction data from developers, we de-
veloped and used our own monitoring tool, PersonalAnalytics 2, for the Windows
operating system. The tool tracks participants’ mouse and keyboard interaction,
as well as their application usage. For the mouse, the tool tracks the clicks
(coordinates and button), the movement (coordinates and moved distance in
pixels), and the scrolling (coordinates and scrolled distance in pixels) along
with the corresponding time-stamp. For the keyboard, the tool records the
type of each keystroke (regular, navigating, or backspace/delete key) along with
the corresponding time-stamp. For privacy reasons, we did not record specific
keystrokes. Our tool further records the currently active application, along with
the process name, window title, and time-stamp whenever the window title
changed or the user switched to another application.

Task Type Inference. We inferred task type categories by performing a The-
matic Analysis [Braun and Clarke, 2006] on the basis of related work and our
observation logs. The analysis process included first familiarizing ourselves with
the observed task switches, open coding the observed and participant-validated
tasks and accompanying notes, identifying themes, and categorizing the resulting
themes into higher level task types. This process resulted in nine task type
categories: Development, Personal, Awareness & team, Administrative, Planned
meeting, Unplanned meeting, Planning, Other and Study. The task types are
described in more detail in Table 5.4 and discussed in Section 5.6.1.

5.3.2 Study 2 – Self-Reports

To capture a longer time period and more breadth in developers’ work, we
conducted a second field study with 13 participants over a period of 4 workdays
each. For this study, we used experience sampling, in particular we regularly
prompted participants to self-report task switches and types. By using experience
sampling, we also wanted to mitigate the risk of a bias in participants’ behavior

2https://github.com/sealuzh/PersonalAnalytics. Details can be found in [Meyer
et al., 2017b].

https://github.com/sealuzh/PersonalAnalytics

5.3 Study Design 149

due to an observer sitting behind them, which, for example, could lead to
participants being less likely to browse work unrelated websites.

Procedure. Before the study, we emailed participants a document explaining
the study goal and procedure, asked them to sign a consent form and to answer
a pre-study questionnaire with questions on demographics, their definition of a
task, reasons for switching between tasks, and on the task types they are usually
working on. After that, participants were asked to install the same monitoring
tool that we described above on their main computer. In case participants
worked on multiple computers (e.g., a desktop and a laptop), we asked them to
install the monitoring tool on both devices. Participants were further asked to
read our definitions of a task, task switch and task type, as well as instructions
on how to use the self-reporting component that we added to our monitoring
tool. Finally, participants were asked to pursue their work as usual for the next
couple of workdays while also self-reporting their task switches and types when
the pop-ups/prompts appeared.

For this study, our tool prompted participants once per hour to self-report
their task switches and types for the previous hour. The self-reporting step is
explained in more detail below. We intentionally decided to use an interval of one
hour rather than a full day, to balance the intrusiveness of the prompts with the
ability to accurately remember tasks and task switches over the previous time
interval [Tourangeau et al., 2000]. To further ensure high quality in the collected
self-report data we further allowed participants to withdraw from the study at
any point in time, and to pick the time for their participation themselves. In
addition, and to avoid boredom or fatigue, we asked participants to respond to a
total of 12 to 15 prompts, assuming an average of four self-reports per day and a
total of three to four workdays for participation. This number was a result of
several test-runs over multiple weeks and from qualitative feedback gathered with
a pilot participant, a professional developer. Furthermore, we provided support
to postpone self-report prompts for 5 minutes, 15 minutes, or 6 hours, and built
and refined the self-reporting component to require as little effort as possible to
answer, e.g., by letting participants answer the required fields by simply clicking

150 Chapter 5. Detecting Developers’ Task Switches and Types

on elements instead of asking them for textual input. Finally, each pop-up also
asked participants to report their confidence with their self-reports.

Throughout the study, participants could check the number of completed
pop-ups. Once they completed 12 pop-ups, participants could notify us and
upload the collected data and self-reports to our server. The upload wizard once
again described the data collected and allowed participants to obfuscate the data
before sharing it with us. At the end of the study, participants were asked to
answer a post-study questionnaire with questions on the experienced difficulties
when self-reporting task switches and task types, on further task types they were
working on, and on how they could imagine using information on task switches
and types. After completing the survey, participants were given two 10 US$ meal
cards to compensate for their efforts.

Participants. We recruited 17 participants through professional and personal
contacts from one large-sized software company. We discarded data from three
participants that self-reported less than 10 task switches in the days of their
participation. We further discarded the data of one participant whose definition
of a task switch was very different to ours and the rest of the participants (i.e.,
he considered every application switch a task switch). Of the remaining 13
participants that we used for the analysis, 2 were female and 11 were male.
Our participants had an average of 12.1 (±8.2, ranging from 1 to 30) years
of professional software development experience and were working in different
roles: 10 identified themselves as individual contributors and 3 as developers in a
leading position (i.e., Lead or Manager). All participants resided in the United
States. In the paper, we refer to these participants as P13 to P25.

Self-Reporting Component. The self-reporting component is part of our mon-
itoring tool and includes a pop-up with three pages. The first page asked
participants to self-report the task switches they experienced in the past hour. It
visualized participants’ application usage on a timeline using different colors for
each application and allowed them to self-report their task switches by clicking on
the lines denoting applications switches. We restricted the task switch self-reports

5.3 Study Design 151

Figure 5.2: Screenshot of the second page of the experience sampling pop-up
that asked participants to self-report their task types.

to a granularity of application switches with a minimum length of 10 seconds for
a variety of reasons: First, we assumed that most of participants’ task switches
coincide with application switches (e.g., switching from the email client to the
IDE, or from the browser to an IM client) and fewer happen during a session
uniquely spent within the same application (e.g., switching tasks directly in the
IDE or in the browser). And, we wanted to avoid cluttering the user interface of
our self-reporting component and simplify the reporting for participants. Similar
to Shen et al. [2009], the timeline visualization provided additional details when
the participant hovers over an application, such as the application name, time
when it was used, window title(s) and user input produced in that application.
As soon as participants completed self-reporting their task switches for the whole
previous hour, they could proceed to the second page and self-report their task
types (see Figure 5.2). On the second page, we visualized the same timeline as
before, but added another row that prompted participants to select task types
from a drop-down menu. After selecting the task types for all task segments,
participants could proceed to the last page. The third page asked participants
to self-report their confidence with their self-reports of task switches and task
types on a 5-point Likert-scale (5: very confident, 1: not at all confident) and
optionally add a comment. The user interface we used to collect the ground truth
for task switches and types resembles the one by Mirza et al. [2011a, 2015, 2011b].
The supplementary material3 includes the pre- and post-study questionnaires
and additional screenshots detailing the self-reporting component.

3Supplementary material: http://doi.org/10.5281/zenodo.3244076

http://doi.org/10.5281/zenodo.3244076

152 Chapter 5. Detecting Developers’ Task Switches and Types

5.4 Data and Analysis

For this study, we collected two rich data sets, including observed or self-reported
ground truth data, and automatically tracked computer interaction data. Prior
to the main analysis of the data, we performed multiple pre-processing steps,
including data segmentation and feature extraction, which are summarized in
the remainder of this section.

5.4.1 Collected Data

For our study 1, we collected observation logs for a total of 51.7 hours of
work and an average of 4.3 (±1.3) hours per participant. For our study 2, we
collected self-reports for a total of 58 workdays and an average of 4.5 (±1.7)
days per person. On average, participants reported a high confidence with their
self-reports (>3) in 20.6 (±9.0), and a medium or low confidence (≤3) in 22.2
(±16.7) of the pop-ups they answered. For our analysis, we decided to only use
the data of the 268 self-reports with a high confidence (>3), accounting for a
total of 268 hours of work, and discarding the rest (289 self-reports). Table 5.1
reports statistics on the self-reports. Since overall, only 11% of the pop-ups
were postponed by participants, one reason for the relatively high number of
self-reports with medium or low confidence could be that the pop-ups appeared at
inopportune moments and participants did not remember they could postpone it.
Instead, participants might have just clicked through the pop-up and reported a
low confidence to not distort the data. We discuss possible threats in Section 5.7
and improvements in Section 5.8.

5.4.2 Time Window Segmentation

To calculate and extract task switch detection features, we defined the time
windows to be between application switches, which we call application segments.
We chose to use application segments, since developers on average spend only 1 to
2 minutes in an application before switching to another application, and possibly,
switching tasks [González and Mark, 2004; Meyer et al., 2017a, 2014]. In contrast,

5.4 Data and Analysis 153

Table 5.1: Self-reports from study 2.

All per Participant
Days participated 58 4.5 (±1.7)
Pop-ups displayed to participants 557 42.8 (±21.6)
Pop-ups answered by participants 268 20.6 (±9.0)
- Pop-ups answered within 5 minutes 158 12.2 (±6.3)
- Pop-ups answered after 5 minutes 110 8.5 (±5.4)
Pop-ups postponed by participants 62 4.8 (±3.5)
Pop-ups discarded by researchers 289 22.2 (±16.7)

previous approaches predominantly used longer and fixed window lengths of 5 or
10 minutes [Nair et al., 2005; Oliver et al., 2006; Shen et al., 2009, 2007]. These
shorter and more flexible time windows at borders of application switches allow
to more accurately capture developers’ behaviors, and to more precisely locate
the point in time of the task switch. For the task type detection features, we
used the time windows between two task switches (as identified by the self-reports
or observations), which we call task segments for the feature extraction.

5.4.3 Task Switch Features Extracted

A next step towards building a classifier for task switch detection is to extract
meaningful features from the raw computer interaction data collected by the
monitoring tool. Hence, we developed features based on the heuristics participants
stated as indicative of their task switches in the post-questionnaire of study 2,
adapted features that have been linked to developers’ task switching behavior
in prior work, as well as features based on our own heuristics. The features we
used are described in Table 5.2.

Since task switch detection is a special case of change-point detection [Bas-
seville et al., 1993; Gustafsson and Gustafsson, 2000], which is trying to detect
abrupt changes in time-series data, many of our features capture the similarity
between characteristics of the previous application segments and the current one,
such as the difference in the average number of keystrokes. However, it is not yet
clear, how many steps one should go back into the past for these comparisons.

154
Chapter5.

D
etecting

D
evelopers’Task

Switches
and

Types

Table 5.2: Features analyzed in our study and their importance for predicting task switches and task types.
Features Import.

Switch
Import.

Type All
Import.

Type UI
User Input Features 48.2% 47.6% 77.0%
Keystroke differences: difference in the number of navigate/backspace/normal keystrokes pressed per second
between the previous and current application/task segment [Bao et al., 2018; Iqbal and Bailey, 2007; Koldijk et al.,
2012; Mirza et al., 2015]

17.3% 17.5% 26.4%

Mouse click differences: difference in the number of left/right/other mouse clicks per second between the previous
and current application/task segment [Bao et al., 2018; Iqbal and Bailey, 2007; Koldijk et al., 2012]

18.0% 13.9% 23.5%

Mouse moved distance: total moved distance (in pixels) of the mouse per second [Iqbal and Bailey, 2007] 7.6% 10.0% 17.1%
Mouse scrolled distance: total scrolled distance (in pixels) of the mouse per second [Bao et al., 2018; Koldijk et al.,
2012]

5.3% 6.2% 10.0%

Application Category Features 24.5% 39.1% NA
Switch to/from specific application category: switch to/from a specific application category (e.g., messaging),
while the previous one was different. Application categories considered: messaging [PS],[Iqbal and Bailey, 2008], idle
[PS],[Maalej et al., 2017], code review [PS], utility, work unrelated browsing [PS], music [PS],[Bao et al., 2018; Iqbal
and Bailey, 2008; Mirza et al., 2011a]

22.6% NA NA

Same application category: the current application category is the same as the one in the previous application
segment, e.g., both are messaging [Iqbal and Bailey, 2008; Mirza et al., 2011a]

1.9% NA NA

Time spent per application category: the percentage of the total duration of the task segment that was spent
in each of the 17 application categories [Koldijk et al., 2012; Mirza et al., 2015; Shen et al., 2009]

NA 39.1% NA

Switching Frequency Features 18.5% 13.3% 23.0%
Difference in the window switches frequency: difference of the number of switches between windows of the
same or a different application per second between the current and the previous application/task segment [Koldijk
et al., 2012; Oliver et al., 2006; Shen et al., 2009]

8.2% 13.3% 23.0%

Difference in the time spent in an application: difference of the total duration spent between the current and
the previous application segment [Shen et al., 2009]

10.3% NA NA

Lexical Features 8.8% 0% 0%
Code in window title: the window titles of the current and previous application/task segments both contain code,
as identified by text that is written in camelCase or snake_case. Can also distinguish between development and other
file types

1.6% 0% 0%

Lexical similarity of the window titles and application names: cosine similarity based on the term frequency-
inverse document frequency (TF-IDF) between the current and previous application segments’ window titles or
application names [Brdiczka et al., 2010; Oliver et al., 2006; Shen et al., 2009]

7.2% NA NA

References on these features (in blue) are either on previous related work or participants’ suggestions (PS). A feature importance of NA denotes that the
feature was not used for the prediction group. For the task type columns, ‘All’ denotes that all features were considered, ‘UI’ indicates that only the user
interaction features were used, and the application category features were ignored.

5.4 Data and Analysis 155

Therefore, we analyzed how many steps (in our case application segments)
one should go back for calculating features. In particular, we compared the
precision and recall of the task switch detection taking into account 1 and up to
10 steps back into the past. Our analysis of the results indicated that after an
initial increase of the precision for detecting a switch, the precision and recall
gradually drop as the number of steps increases. We therefore chose 2 as the
number of steps to go back in terms of application segments. As a result, the
total number of features used for the task switch detection is 56, which is double
the number of unique features used: once calculated for comparing the current
with the previous application segment, and once to compare the previous two
application segments. In the following, we provide an overview over the features
used:

User Input Features. The first feature group are user input features based
on keyboard and mouse interaction, such as the difference in the number of
keystrokes the participant pressed per second between this and the previous time
window segment.

Application Category Features. We categorized commonly used applications
into one of 17 predefined application categories (based on our classification in
previous work [Meyer et al., 2017a]). These include categories specific to software
engineering, such as Development, Code Review or Testing, but also more general
ones, such as Read/Write Document, Email and Web Browser. They are leveraged
in 12 features that capture switches to or from a specific application category,
such as switching to a messaging application or becoming idle. These features
were selected based on participants’ suggestions of what they consider to be good
indicators for switching to another task. Since switching to another application
might be another indication for a task switch [Iqbal and Bailey, 2008; Mirza
et al., 2011a], we added one feature that captures these.

Switching Frequency Features. In the post-study questionnaire, participants
mentioned that they often navigate through several applications to clean-up

156 Chapter 5. Detecting Developers’ Task Switches and Types

their computer right before starting a new task, which is why we added a
temporal feature based on the window switching frequency. One feature captures
the difference in the time spent in an application, since this might be another
indicator for a task switch, either because a switch is less likely immediately after
a task switch, and the likelihood of a task switch increases as time passes [Shen
et al., 2009].

Lexical Features. Inspired by prior work [Brdiczka et al., 2010; Oliver et al.,
2006; Shen et al., 2009], we also added three lexical/semantic features that are
extracted from application names and their window titles. Since window titles
might include code snippets, such as a class or method name or development file
type, we added a feature that captures whether the window title contains text
written in camelCase or underscore_case, and whether this is different to the
previous segment. To determine whether the previous and current application
segments have a contextual similarity, two features are calculated based on the
cosine similarity of the window titles and application names using the term
frequency-inverse document frequency (TF-IDF). Note that the application name
and window titles were also used to determine the application category features.
In addition, and unlike some previous work, we explicitly did not capture file
contents to reduce intrusiveness and avoid privacy concerns [Rattenbury and
Canny, 2007; Soules and Ganger, 2005; Wu et al., 2005].

5.4.4 Task Type Features Extracted

For the task type detection, we reused the same features as in the task switch
detection whenever possible. However, some features required adaption or made
no sense in this context. First, as the time window for task type detection
encompasses one or multiple application segments, we replaced the application
category features with a feature that captures the ratio between the time spent
in the specific application category and the time spent in the task segment. This
allowed us to determine the dominant application category in a task segment.
Second, we eliminated the lexical similarity features that relied on similarity
measures between window titles of individual applications. This resulted in a
total of 27 features used for the task type detection.

5.4 Data and Analysis 157

5.4.5 Outcome Measures

For the task switch detection, we labeled the application segments with
the observed (study 1) and self-reported (study 2) task switches. In case the
previous application segment was marked as a task switch, we labeled the current
application segment with Switch, otherwise with NoSwitch. Therefore, our task
switch detection approach is at most the duration of the application segment
away from the actual task switch, which was an average of 1.6 minutes (±2.2) in
our study. For the task type detection, we labeled each task segment with the
observed or self-reported task type. Descriptive statistics regarding participants’
task switching behavior and the task types they worked on can be found in
Section 5.5.3 and Section 5.6.4, respectively.

5.4.6 Machine Learning Approach

We used scikit-learn by [Pedregosa et al., 2011b], a widely used machine learning
library for Python, to predict task switches and task types. We evaluated several
classifiers by applying them to our feature set and testing different parameter
values. A RandomForest classifier with 500 estimators outperformed all other ap-
proaches, including a Gradient Boost-Classifier, Support Vector Machine (SVM),
Neural Network and Hidden Naïve Bayes classifier. A RandomForest classifier is
one form of ensemble learning that creates multiple decision tree classifiers and
aggregates their predictions using a voting mechanism [Breiman, 2001; Liaw et al.,
2002]. It does not require a pre-selection of features and can handle a large feature
space that also contains correlated features. Hence, for the remainder of this
paper, the presented results were obtained using a RandomForest classifier.
Prior to classification, we impute missing values by replacing them with the mean
and apply standardization of the features, which centers the data to 0 and scales
the standard deviation to 1. These common steps in a machine learning pipeline
can improve a classifier’s performance [Pedregosa et al., 2011a]. For the task
switch detection, we further apply Lemaître’s implementation of SMOTE,
which is a method for oversampling and can considerably boost a classifier’s
performance in the case of an imbalanced dataset such as ours [Lemaître et al.,

158 Chapter 5. Detecting Developers’ Task Switches and Types

2017]. For the task type detection, where as much as 80-90% of the reported
types are of the Development class we instead employ penalized classification to
correct problems caused by class imbalance, as SMOTE has significant drawbacks
when the minority classes have a limited number of samples [Nguyen et al., 2009].

We built both individual and general models, where an individual model
is trained and tested with data solely from one participant and a general model
is trained on data from all participants except one, and tested on the remaining
one. Individual models often have a higher accuracy since they are trained on
a person’s unique behavioral patterns. On the other hand, general models are
usually less accurate but have the advantage of solving the cold-start-problem,
which means that no prior training phase is required and the model can be
applied to new users immediately.

To evaluate the individual models, we applied a 10-fold cross-validation
approach, where the model was iteratively tested on 1/10 of the dataset while
being trained on the remaining data. We adapted the cross-validation approach
to account for the temporal dependency of the samples. In particular, there is a
dependency between samples in close temporal proximity, since data from the
preceding samples is incorporated in the features. To ensure a valid and realistic
evaluation of the model, we therefore deleted h samples on either side of the test
set block [Racine, 2000]. In our case, we chose h=10 since we included up to 10
preceding samples in the feature calculation.

5.5 Results: Detecting Task Switches

5.5.1 Task Switch Detection Accuracy

Table 5.3 gives an overview of the task switch detection performance of individual
and general models. We split the presentation of the data into the two studies,
since they were collected with a different method. Overall, our analysis revealed
that we can detect task switches at their exact location with a high averaged
accuracy of 87% (precision: 67% and recall: 37%) when trained with individual
models. The performance of the classifier drops considerably when we apply the

5.5 Results: Detecting Task Switches 159

Table 5.3: Overview of the performance of the task switch detection, for both
individual and general models.

INDIVIDUAL MODELS GENERAL MODEL
Switches No Switches Switches No Switches

Dataset Acc. Prec. Rec. Precision Rec. Acc. Prec. Rec. Prec. Rec.
Study 1: Observations 83% 59% 40% 86% 92% 68% 46% 62% 88% 73%
Study 2: Self-Reports 89% 69% 36% 90% 97% 71% 43% 58% 90% 75%
All 87% 67% 37% 89% 96% 73% 46% 55% 90% 79%

general model, to an averaged accuracy of 73% (precision: 46% and recall: 55%).
For the individual models, we compared the results of each participant’s model
(see supplementary material). It reveals that the prediction performance varies
quite substantially for each participant. As expected, both the individual and
general models of study 2 performed slightly better than the ones in study 1.

We also analyzed the accuracy of the task switch detection of our individual
models more qualitatively by calculating the error distance between each
predicted and the actual task switch. The average error distance is 1.39 (±3.36)
application-switches, meaning that in case of a faulty task switch detection, the
actual task switch was 1.39 applications before or after the predicted one. 14.3%
of the task switches our model predicted have a distance of 1 application-switch,
5.0% have a distance of 2 application-switches, and 20.7% have a distance of 2
or more application-switches.

5.5.2 Task Switch Feature Evaluation

A Random Forest classifier can deal well with a larger number of features which
makes prior feature dimensionality reduction of our 56 features obsolete [Breiman,
2001; Liaw et al., 2002]. While we do not apply a feature selection technique in
our approach since it would only select the most predictive features in the model,
we are still interested in learning if certain features are generally more important,
especially across different participants. The second column of Table 5.2 contains
the feature importance as attributed by the RandomForest classifier using all
features and averaged over all participants’ individual models. To calculate
the feature importance metrics, we used the Gini impurity measure from scikit-

160 Chapter 5. Detecting Developers’ Task Switches and Types

learn, which captures the feature’s ability to avoid mis-classification [Pedregosa
et al., 2011b]. The most predictive feature groups are user input (48.2%) and
application category (24.5%). The feature group with the least predictive power
are the lexical features (8.8%). The supplementary material includes the feature
importances of each individual feature.

5.5.3 Descriptive Statistics of the Dataset

Participants switched frequently between tasks, with a mean task switch rate of
6.0 (±3.7, min: 1.8, max: 18.9) times per hour. The average time spent on each
task was 13.2 (± 7.3, min: 3.1, max: 30.8) minutes 4. Developers’ task switch
behaviors are similar to previous work [González and Mark, 2004; Meyer et al.,
2014].

5.6 Results: Detecting Task Types

5.6.1 Identified Task Type Categories

As described in more detail in Section 5.3, we inferred task type categories after
collecting task and task switch data from observing 12 developers at work and
performing a Thematic Analysis. This resulted in nine task type categories we
described in Table 5.4. In the post-study questionnaires of study 2, participants
reported that they agreed with the identified task types and generally had no
issues to assign them. However, two participants mentioned that a task type for
Support duties was missing:

“[Support]-Duties. These are very specific tasks that require a lot of different things
to do. It’s not Development and it can be a lot of ad-hoc and requires many context
switches.” - P14

Two participants mentioned that it was sometimes difficult to know if time
spent on emails should be assigned to Development or Awareness & team:

4We do not report individual results for the two studies, since the task switch rate (p-
value=.056) and time spent on a task (p-value=.215) are not significantly different in the two
datasets.

5.6 Results: Detecting Task Types 161

“I was sometimes unsure of how to classify the time I spent responding to emails.
I generally classified it as development since most of the emails were development-
related.” - P21
Most of our task type categories are consistent with previous work that

investigated knowledge workers’ tasks [Czerwinski et al., 2004; Kim and Choe,
2019; Koldijk et al., 2012; Reinhardt et al., 2011]. For example, Meetings, Admin-
istrative, Planning and Private were also prevalent in work by both Czerwinski
et al. [2004] and Kim and Choe [2019]. The latter further divided project work
(in our case Development tasks) into Documenting and Conceptualizing Ideas,
Environment and Development and Design. We did not make these finer-granular
distinctions since we did not want to make the self-reporting of task types in the
second study too complicated, which would degrade the quality of self-reports.

5.6.2 Task Type Detection Accuracy

Table 5.4 shows the results of our task type detection approach across all 9
task type categories. We omit the accuracy metric in this table, as recall is a
measure of individual class accuracy, and since the recall presented in the all row
is weighted by class size it therefore assumes exactly the same value as accuracy.
As with the task switch detection analysis, we trained both individual models
and one general model which was trained on all participants. To save space,
precision statistics are not shown for the general model, but they were observed
to be lower across the board as compared to those values seen in the individual
models. The Administrative task type was not predicted a single time by the
general classifier, and as thus the precision scores were undefined for this class.
In general, the individual models (precision 59%, recall 61%) outperformed the
general model by a large margin (precision 44%, recall 50%).

162
Chapter5.

D
etecting

D
evelopers’Task

Switches
and

Types

Table 5.4: Overview and descriptions of the task type categories, the average time developers spent on each task
type per hour, and the performance of our task type detection approach, for both individual and general models.

INDIVIDUAL MODELS GENERAL MODEL
Avg (Stdev) Sample All Features UI Features All Feat. UI Feat.

Task Type Category mins/h Size Prec. Rec. Prec. Rec. Rec. Rec.
Development: bug-fix, refactoring, code review, im-
plementing new feature, reading/understanding docu-
mentation/code, testing, version control, dev.-related
learning

37.2 (±12.2) 612 70% 85% 62% 77% 77% 78%

Personal: work unrelated web browsing, private emails
or texts, (bio or lunch) break

9.7 (±7.0) 170 48% 45% 42% 34% 32% 23%

Awareness & team: reading/writing emails, discus-
sions/answering questions in IM

5.3 (±6.0) 234 64% 53% 40% 35% 44% 15%

Administrative: often routine tasks, e.g., reporting
work-time, expenses report, paperwork

4.0 (±3.6) 12 50% 17% 33% 8% 0% 0%

Planned Meeting: attending a scheduled meeting/-
call, e.g., weekly scrum, weekly planning meeting

3.6 (±2.7) 94 40% 40% 33% 31% 4% 1%

Unplanned Meeting: attending an ad-hoc, informal
meeting, usually with one team-member only, e.g., un-
scheduled phone call, colleague asking a question

3.1 (±2.8) 90 43% 29% 36% 29% 25% 18%

Planning: in the calendar, task list, work item tracker 3.0 (±3.5) 90 31% 24% 26% 16% 1% 0%
Other: tasks that do not fit into the other categories.
Participants mentioned that these were support-duty,
document writing (e.g., in PowerPoint, Word) and for
product development/innovation.

2.7 (±3.9) 40 47% 25% 3.7% 2.5% 0% 1%

Study: work related to this study (e.g., talking to
observer, filling out questionnaire)

1.9 (±1.9) 64 67% 58% 49% 41% 69% 20%

All 1406 59% 61% 46% 49% 50% 41%
The ’All Features’ columns show results using models trained with all features, while the ’UI Features’ columns show results from
models trained using only user interaction features (i.e., excluding application category features).

5.6 Results: Detecting Task Types 163

One important aspect of our approach that distinguishes it from previous work
(e.g., [Bao et al., 2018; Iqbal and Bailey, 2008; Mirza et al., 2011a]) is its ability
to make predictions even on previously unseen applications. To demonstrate this,
we split the results into two categories: with the manual application category
mappings (All Features) and without (UI Features). The UI Features include all
user interaction features, but exclude application features. While the combined
approach proved to be superior, user input features still proved to have high
predictive power on their own. Overall, there was a 28.2% increase in precision
when including the application category features, and a 24.5% increase in recall.

We also found there was a substantial difference in performance depending on
the task type category. The Development task type proved to be the easiest to
predict, achieving high recall (85%) and precision (70%) scores. Conversely, the
Planning task type saw very poor results, with only 24% recall and 31% precision.
These results are somewhat in line with what one might expect. Naturally,
some task categories are more difficult to predict than others. For instance,
discerning the nature of a meeting (planned or unplanned) based purely on a
users applications used and input activity seems to be nearly impossible. In some
categories, especially in both of the meeting categories and the private category,
there was a large amount of idle time recorded for many participants, which also
partially contributes to the confusion seen in the results.

5.6.3 Task Type Feature Evaluation

The third and fourth column of Table 5.2 show the Gini feature importances we
calculated for our RandomForest classifiers, averaged over all participants. When
considering All Features, we found the time spent per application category features
to have by far the greatest importance (39.1%), followed by keystroke features
(17.5%). However, the combined user input feature group contributed more than
any other feature group (47.6%). The lexical features did not contribute at all
to the results of the classifier, which suggests there is room for improvement in
this area as window titles can contain a substantial amount of hints that could
help to identify a specific task. The supplementary material includes individual
task type feature importances.

164 Chapter 5. Detecting Developers’ Task Switches and Types

5.6.4 Descriptive Statistics of the Dataset

On average, developers worked on 6.1 (±1.6, min: 3, max: 9) different task
types during the studied time periods, indicating that most of the identified
task types are relevant to developers. The task type participants self-reported
having spent the most time on is Development, with an average of 37 (± 12)
minutes spent per hour. Table 5.4 reports details for all task types as well as the
number of participants who self-reported having worked on the task type. We
also analyzed if having a higher diversity in work (i.e., working more different
task types) correlates with developers switching more between tasks. There is a
weak positive correlation (Pearson’s r = .0.32, p = .12).

5.7 Discussion

We discuss implications of our results, possible improvements and practical
applications of automated task detections.

5.7.1 Improving Task Switch and Type Detection

We found that for both task switch and type detection, the individual models
outperform the general model, with an overall accuracy of 87% compared
to 73% for switch prediction, 61% to 50% for type prediction. Even though
we collected data from a rather large sample of 25 participants (compared to
similar work), we were not yet able to build reliable general models, which could
solve the cold-start-problem. The general models’ inability to discover common
patterns across all participants emphasizes how individual and diverse developers’
task switch behaviors are. More research is required to explore reasons for and
better balance these individual differences. For example, we could imagine to
include information about a developer’s personality and company culture to train
a classifier that works well for developers with similar work habits, instead of
building a general one for everyone. Future work could also study the predictive
power of features extracted from additional data sources, such as emails, meetings,
biometrics (e.g., detecting when a user is away from the computer), and more
detailed development related data (e.g., activities inside the IDE).

5.7 Discussion 165

The relatively low feature importances of our lexical features shows further
potential to more effectively leverage contextual information. Besides calculating
lexical similarity based on cosine similarity (TF-IDF) of window titles, we also
experimented with variations, such as word embeddings or using term-frequencies
without weights. They led to even less predictive features, which is why we
did not report them separately. One reason could be the little overlap in the
window title data. While leveraging additional lexical data (e.g.,, file contents)
could bear a lot of potential, the privacy concerns for this data were too high for
participants.

Ideally, a task switch and type detection would be very close to real-time,
i.e., close to the exact time a switch occurs. With our approach, there can be a
prediction delay of a maximum of one unique application segment, on average
1.6 minutes (±2.2), when predicting a task switch. This delay is considerably
smaller compared to previous approaches that applied fixed window lengths of
(usually) 5 minutes (e.g., Koldijk et al. [2012]; Mirza et al. [2015]; Nair et al.
[2005]; Oliver et al. [2006]; Shen et al. [2009, 2007]). Nonetheless, future work
could further reduce the prediction delay by further shortening the smallest
possible segment size, in our case application switches. This would allow to also
identify switches within an application, such as when a developer is switching
tasks inside the web browser.

Our approach extends prior work by combining temporal and semantic
features, by developing new features, and by not being limited to capturing task
switches and types within the IDE only. The evaluation of our approach in a
field-study with 25 professional developers, compared to 1 to 11 participants in
previous work, revealed higher accuracy and less delay in the predictions than
comparable prior work.

5.7.2 Applications for Automated Task Detection

An active area of research aims to better support developers’ frequent task
switching, for example by supporting resuming interrupted tasks or by easing
task switching (see Section 5.2.3). So far, most approaches are limited to
developers’ manual identification of task switches, and their evaluations have

166 Chapter 5. Detecting Developers’ Task Switches and Types

pointed out challenges this poses for developers. Our approach demonstrates
the feasibility of automatically detecting task switches and types in the field,
based on a few hours of training data, which makes it possible to increase the
value of previous approaches significantly and stimulate new research and tool
support. In the post-study questionnaire of study 2, participants described
concrete applications that we qualitatively analyzed and related to prior work,
which resulted in the following three main opportunities for applying automated
task detection:

One application of an almost real-time detection of task switches that 8
(out of 13) participants described is to actively reduce task switching. This
includes automatically blocking notifications from email, instant messaging or
social networks when a developer is focused on a (challenging) task, to allow
extended times of deep focus:

“What if Windows has a built-in and personalized model about when to give you
notifications. I feel like there is a good middle ground between forcing the user to
turn off notifications from the OS and having too many notifications interrupting
the user.” - P25

Reducing task switching at times of high focus could greatly reduce multi-
tasking, a major source of stress and quality issues [González and Mark, 2004;
Mark et al., 2018, 2008b, 2017]. Similarly, an automated task switch detection
could improve interruptibility classifiers and postpone in-person interruptions
from co-workers to task switch borders, times they are less costly [Fogarty et al.,
2005; Züger et al., 2017; Züger et al., 2018].

Another application of automated task detection could be to support the re-
sumption of suspended or interrupted tasks. Participants did not suggest
this application themselves, but 8 (out of 13) rated it as ’useful’ or ’very useful’ in
a follow-up question of the final questionnaire. According to Parnin and Rugaber
[2009], a major challenge of task resumption is to rebuild the interrupted task’s
context. Our task detection approach could automatically identify and build up
task contexts, consisting of work artifacts (e.g., websites or files) and applications
that the developer used for the task. Applying similar summarization approaches
as seen in other areas of software development [Nazar et al., 2016; Treude et al.,

5.7 Discussion 167

2015] could be presented to the user as cues upon returning to the suspended task,
which has been shown to considerably reduce the resumption lag [Altmann and
Trafton, 2004; Bailey et al., 2001; Rule et al., 2015]. While previous approaches,
such as TaskTracer [Dragunov et al., 2005], Scalable Fabric [Robertson et al.,
2004], GroupBar [Smith et al., 2003] and Mylyn [Kersten and Murphy, 2006],
allow the capturing and presentation of task context, they require the user to
manually group related artifacts or manually state the start and end of a task,
thus, reducing chances of long-term adoption. Even tough there is room for
improvement as discussed above, our approach can serve as a starting point to
automate these approaches, since it can already be beneficial to receive help with
resuming some tasks, as long as they are detected correctly.

A third opportunity of application that 10 (out of 13) participants suggested
is to use automated task detection to increase their awareness about task
work and time spent on tasks, which could help to identify opportunities for
work habit and productivity improvements. This is in line with a survey with
379 developers that showed the most-often mentioned measurement of interest
when reflecting about productivity are the tasks developers made progress on
and completed in a workday [Meyer et al., 2014]. An aggregated visualization
of the automatically inferred tasks could give developers insights such as how
much time they spend on different tasks, when they worked on planned versus
unplanned tasks, or their multi-tasking behaviors:

“It can help point out different working styles that are also effective and efficient.
Not everyone works in the same way.” - P24

Recently, researchers started building retrospective dashboards for develop-
ers [Beller et al., 2016; Codealike, 2019; Meyer et al., 2017b; Wakatime, 2019]
and other knowledge workers [Kim et al., 2016; RescueTime, 2019; Whittaker
et al., 2016], usually by visualizing data on the level of applications or application
categories, but suggesting that a per-task level would be more beneficial. An
increased awareness about one’s task switching behavior could support developers
to identify goals that help to maintain and improve good work habits, such as
reducing multi-tasking or actively blocking notifications from distracting services
and websites at times they need to focus. Participants further suggested that the

168 Chapter 5. Detecting Developers’ Task Switches and Types

data could help to reduce administrative workloads that require them to report
time spent at work:

“We’re often asked to report at the end of the month how much time we spent on
support requests (...) versus development work. That kind of info is tedious to
track manually, but a tool could generate an automatic report as needed, allowing
for more accurate counts.” - P22

Lu et al. [2018] recently showed that the lack of logs of activities and tasks
is often a hindrance to be able to transfer them into time reports. While a few
time-tracking tools already exist (e.g., DeskTime [2019], TimeDoctor [2019]),
they all require users to manually specify the start and end of a task.

5.8 Threats to Validity

Observing Developers in Study 1. The internal validity of our results might
be threatened by the presence of the observers during the observation sessions,
causing developers to diverge from their regular work habits, e.g., having less
breaks than usual. Observing participants on a single day only might not be
representative of the participant’s regular workday. We tried to mitigate these
risks by not interacting with participants during the observations, splitting up
the session into two two-hour blocks, sitting as far away from the participant
as possible, telling co-workers beforehand that they could still communicate
and interrupt as usual, and by allowing the participant to pick an optimal
timeslot that is representative of their usual work. Our observational study
has the advantage that, rather than performing a lab study or experimental
exercise, participants were observed during their real-world work, thus increasing
generalizability and realism. However, the above mentioned risks of observing
developers at their workplace make it very difficult to scale observational studies
and observe them over many days. Hence, we did not rely only on observations,
but also on participants’ self-reports and with that, combining two methods and
strengthening our overall approach.

5.8 Threats to Validity 169

Self-Reporting in Study 2. While collecting participants’ task data using self-
reports has proven to be a valuable approach to scale the collection of labeled
data for supervised learning, there are a few limitations. First, we rely on the
accuracy of participants’ self-reports. For example, they might not always have
been able to accurately remember their tasks, or filling out the pop-up regularly
might be perceived as cumbersome after a while. In Section 5.3.2, we describe
our actions to minimize these risks in detail, including the ability to postpone
a pop-up and collecting confidence ratings. Aiming to make the self-reporting
as easy as possible required limiting the segmentation of the self-reports to
applications and excluding application switches shorter than 10 seconds. Future
work could investigate how to give participants good-enough cues that allow
them to accurately self-report switches within applications (e.g., switching from
a news website to the work item tracker in the browser) without making the
interface too cluttered. Finally, the reliance on collecting computer interaction
data only, instead of also including other sensors such as heart-rate monitors or
cameras, limits our knowledge of what is happening when there is no input to
the computer, e.g., in the case of idle times from using the smartphone, reading
a document without scrolling, or a discussion with a co-worker.

Sample Size. A further threat to the external validity of our results could be
the number of participants. A higher number of participants might have led to a
more robust general model to predict task switches and task types. Nonetheless,
collecting task data from 25 participants is considerably higher than what was
reported in previous work (between 1 and 11 participants). We tried to mitigate
this threat by selecting participants from four different software companies in
various locations.

Task Definitions. The construct validity of our results might be threatened
by our definitions of a task (switch) and our open coding approach to identify
task type categories. To minimize this risk, we based our definitions of task, task
switch and task type on previous work, and asked participants about their own
definitions in both studies (Section 5.3).

170 Chapter 5. Detecting Developers’ Task Switches and Types

5.9 Conclusion
In this paper, we explored the potential of automatically detecting task switches
and task types based on developers’ computer interaction data. Based on two
field studies that we conducted with a total of 25 professional software developers,
we found that we are able to detect task switches and task types with high
accuracy (81% and 61% respectively) and within a short time frame (average 1.6
minutes) from the actual task switch. We thereby examined a broad range of
semantic and temporal features extracted from the computer interaction data
and found that features based on user input data hold the highest predictive
power. Our work extends previous work with an approach that uses a broader
range of temporal and semantic features, by evaluating it in a field-study with
professional developers, and by achieving higher accuracy than previous work
while achieving a smaller delay in the predictions. The strong evidence on the
potential to automatically predict task switches in the field opens up a wide
range of application in real work settings, ranging from complementing existing
manual task support, such as Mylyn, to automating time tracking tools, all the
way to new tool support to leverage developers’ workflows.

5.10 Acknowledgements
We thank our study participants for their participation. We also thank the
anonymous reviewers and our editor for their valuable feedback.

6
Design Recommendations for

Self-Monitoring in the
Workplace: Studies in

Software Development

André N. Meyer, Gail C. Murphy, Thomas Zimmermann, Thomas Fritz
Published at the 2018 CSCW Conference on Computer-Supported Cooperative

Work and Social Computing
Contribution: Study design and execution, tool development, data collection,

data analysis, and paper writing

Abstract

One way to improve the productivity of knowledge workers is to increase their self-
awareness about productivity at work through self-monitoring. Yet, little is known

172
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

about expectations of, the experience with, and the impact of self-monitoring
in the workplace. To address this gap, we studied software developers, as one
community of knowledge workers. We used an iterative, user-feedback-driven
development approach (N=20) and a survey (N=413) to infer design elements
for workplace self-monitoring, which we then implemented as a technology probe
called PersonalAnalytics. We field-tested these design elements during a three-
week study with software development professionals (N=43). Based on the results
of the field study, we present design recommendations for self-monitoring in the
workplace, such as using experience sampling to increase the awareness about work
and to create richer insights, the need for a large variety of different metrics to
retrospect about work, and that actionable insights, enriched with benchmarking
data from co-workers, are likely needed to foster productive behavior change
and improve collaboration at work. Our work can serve as a starting point for
researchers and practitioners to build self-monitoring tools for the workplace.

6.1 Introduction

Figure 6.1: Summary of the Two-Phase Study Describing the Process.

Phase 2: Evaluation of Design Elements

Design Recommendations

A.1 High-level overviews and interactive features to drill-
down into details best support retrospecting on work

A.2 Interest in a large and diverse set of measurements
and correlations within the data

B.1 Experience sampling increases the self-awareness
and leads to richer insights

B.2 Reflecting using the retrospection creates new
insights and helps to sort-out misconceptions

C.1 Natural language insights are useful to understand
multi-faceted correlations

C.2 Insights need to be concrete and actionable
to foster behavior change

Design Elements

A. Supporting various individual needs
B. Active user engagement
C. Enabling more multi-faceted insights

Related Work
+

Pilots
+

Initial Survey

Phase 1: Identification of Design Elements

informed

Field Study

using WorkAnalytics as
a technology probe

used in informed

The collective behavior of knowledge workers at their workplace impacts
an organization’s culture [Brown et al., 2014], success [Hofstede, 1994] and
productivity [Mark et al., 2016b; Meyer et al., 2017a]. Since it is a common goal
to foster productive behavior at work, researchers have investigated a variety
of factors and their influence on knowledge workers’ behavior and productivity,
including the infrastructure and office environment [Brown et al., 2014; DeMarco

6.1 Introduction 173

and Lister, 1985], the interruptions from co-workers [Chong and Siino, 2006;
Czerwinski et al., 2004], and the teams’ communication behaviors [Mark et al.,
2016a; Meyer et al., 2014]. Yet, knowledge workers are often not aware of how
their actions contribute to these factors and how they impact both their own
productivity at work and the work of others [Perry et al., 1994b].

One way to improve knowledge workers’ awareness of their own behavior and
foster productive behavior is to provide them with the means to self-monitor and
to reflect about their actions, for example through visualizations [Prochaska and
Velicer, 1997]. This type of self-monitoring approach has been shown to foster
behavior change in other areas of life, such as physical activity (e.g., [Consolvo
et al., 2008a; Fritz et al., 2014]), health (e.g., [Bentley et al., 2013; Consolvo
et al., 2008b]) and nutrition (e.g., [Gasser et al., 2006]). Existing efforts to
map the success of these self-monitoring approaches to the workplace have
largely focused on tracking and visualizing data about computer use [Kim et al.,
2016; RescueTime, 2019; Treude and Storey, 2010; Whittaker et al., 2016].
Although research has shown that self-monitoring at work can be valuable in
increasing the awareness about a certain aspect of work, such as time spent
in applications [Rooksby et al., 2016; Whittaker et al., 2016] or distracting
activities [Kim et al., 2016], little is known about knowledge workers’ expectations
of and experience with these tools [Rooksby et al., 2016; Treude and Storey,
2010]. The lack of research about what knowledge workers’ need from these tools
may be one reason why many existing solutions have a low engagement and
only short-term use overall [Collins et al., 2014; Kim et al., 2016]. Furthermore,
most of these approaches did not consider collaborative aspects of work, such as
instant messaging, email or meetings.

We address these gaps by aiming to better understand what information
and features knowledge workers expect in workplace self-monitoring tools. To
make our investigations tractable, we focus on one community of knowledge
workers, software developers, before generalizing to a broader range of knowledge
workers in the future. We study software developers due to their extensive use of
computers to support both their individual and collaborative work, including
the use of issue trackers for collaborative planning [Storey et al., 2014, 2017],

174
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

code review systems for shared feedback gathering [Bacchelli and Bird, 2013],
and version control systems for co-editing artefacts [Vasilescu et al., 2016b].
Software developers are also an attractive target given the frequent interest of
this community to continuously improve their work and productivity [Humphrey,
2000; Li et al., 2015]. Furthermore, software developers pursue a variety of
different activities at work [Arciniegas-Mendez et al., 2017; Czerwinski et al.,
2004; González and Mark, 2004] that vary considerably across work days and
individuals [Meyer et al., 2017a]. For our investigations, this combination of
diversity in activity, similarity in domain and extensive use of a computers yields
an ideal combination for considering self-monitoring in the workplace.

To determine a set of design recommendations for building workplace self-
monitoring tools, we followed a mixed-method approach, which is summarized in
Figure 6.1. Phase 1 of our approach started with an investigation of software de-
velopers’ expectations of and requirements for measures to self-monitor their work.
A review of related work indicated barriers that have been identified towards
the adoption of self-tracking technologies at the workplace, including not fully
understanding users’ needs [Li et al., 2010], not knowing in what measures users
are interested in [Meyer et al., 2014; Rooksby et al., 2016; Treude et al., 2015],
and not providing users with a holistic understanding of their work behavior [An-
cker and Kaufman, 2007; Bartram, 2015; Galesic and Garcia-Retamero, 2011;
Huang et al., 2016]. To overcome barriers associated with appropriate measures,
we analyzed previous work on measures of software development productivity
(e.g., [Meyer et al., 2014]) and designed and developed a prototype, called Per-
sonalAnalyticspilot, that captures software development measures, allows software
developers to self-monitor their work patterns and provides a retrospective view
to a developer of their work day and work week.

We received feedback on the prototype through a pilot study with 20 partici-
pants and 5 iterations. Based on what we learned from the pilots, we conducted
a study to learn about the design elements, including measures, needed in a
self-monitoring tool for software development. We received input from 413 soft-
ware development professionals for the survey. An analysis of the pilot and
survey data indicated three design elements needed to build soft-monitoring

6.1 Introduction 175

tools for a workplace: A) supporting various individual needs for data collection
and representation, B) enabling active user engagement, and C) enabling more
insights on the multi-faceted nature of work.

In phase 2, we then refined the prototype to accommodate these design ele-
ments and conducted a field study involving 43 professional software developers
using the refined prototype for three weeks. The refined prototype, which we refer
to as PersonalAnalytics, captures information from various individual aspects
of software development work, including application use, documents accessed,
development projects worked on, websites visited, as well as collaborative be-
haviors from attending meetings, and using email, instant messaging and code
review tools. In addition, PersonalAnalytics prompts a user to reflect on their
work periodically and to-self report their productivity based on their individual
definition. To enable more multi-faceted insights, the captured data is visualized
in a daily retrospection (see Figure 6.2), which provides a higher-level overview
in a weekly summary, and allows users to relate various data with each other.

From the field study, we derived six design recommendations, summarized
in Figure 6.1. For instance, we learned that a combination of self-reflection
on productivity using self-reports, and observations made from studying the
insights in the retrospection enhances participants’ awareness about the time
spent on various activities at work, about their collaboration with others, and
about the fragmentation of their work. In this paper, we report on these six
design recommendations and further requests made by participants for features to
help them turn retrospective information into action. For instance, participants
requested recommendation tools to help them better plan their work, improve
their team-work and coordination with others, block out interruptions, and
increase their productivity.

This paper provides the following main contributions:

• It demonstrates that self-monitoring at work can provide novel insights
and can help to sort out misconceptions about work activities, but also
highlights the need for information presented to be concrete and actionable,
rather than simply descriptive.

176
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

• It demonstrates the value of brief and periodic self-reports to increase
awareness of work and productivity for software developers.

• It presents a set of measurements specific to software development that
professional software developers report to provide the most value to increase
awareness of their work, ranging from the time spent doing code reviews
to the number of emails received in a work day.

This paper is structured as follows: We first discuss related work before we
present how we identified design elements for self-monitoring in the workplace, and
how we incorporated and evaluated them using PersonalAnalytics as a technology
probe. Subsequently, the findings and distilled design recommendations are
presented. Finally, we discuss our findings with respect to long-term user
engagement, potential impact on individuals and the collaboration with their
teams, and the generalizability of our results.

6.2 Related Work

Previous work on approaches for self-monitoring various aspects of life and work is
discussed in Section 1.6 of the synopsis to avoid repetitions. Barriers towards the
adoption of these self-tracking technologies that are specific to this publication
are presented below.

6.2.1 Designing and Evaluating Self-Monitoring Tools for Work

Only few of the workplace self-monitoring tools we presented in Chapter 1.6.6
have been evaluated (e.g., [Huang et al., 2016; Kim et al., 2016; Rooksby et al.,
2016; Whittaker et al., 2016]), limiting our knowledge of the overall value of
these tools to users, particularly limiting our knowledge of which information
is of value to users and if the approaches can affect the behaviour of users. As
described by Klasnja et al. [2011], it is often feasible to evaluate the efficacy of a
self-monitoring tool in a qualitative way to identify serious design issues early,
while still seeing trends in how behaviour might change in the long-term. In this

6.2 Related Work 177

paper, we follow this recommendation, focusing on facilitating the reasoning and
reflection process of a knowledge worker by increasing self-awareness about the
monitored aspect of work [Huang et al., 2016; Kim et al., 2016; Prochaska and
Velicer, 1997]. We leave an assessment of whether the design recommendations
we provide can be embodied in a tool to change user behaviour to future work.
To provide a starting point for building self-monitoring tools targeting software
developers at work and evaluate their potential impact on behaviors at work,
we conducted a three-week user study to investigate the efficacy of the design
elements that we identified from related work, five pilots, and a survey, using
WorkAnalytics as a technology probe. To our knowledge, this is also the first
approach that focuses to raise developers’ awareness about their collaborative
activities, such as gaining insights about emailing, meeting, and code reviewing.

Previous research has also discovered that users rarely engage with the
captured data, resulting in a low awareness and reducing chances for a positive
behavior change when using a self-monitoring tool [Collins et al., 2014; Huang
et al., 2016; Kim et al., 2016]. We compiled and categorized a list of barriers
related work has identified towards the adoption of self-monitoring technologies
at the workplace:

Not understanding user needs. Research has shown that knowledge
workers’ needs for monitoring their computer use vary and that little is actually
known about the measures they are interested in [Li et al., 2011; Meyer et al.,
2014; Rooksby et al., 2016; Treude et al., 2015]. Users sometimes also have too
little time for a proper reflection of the data, or an insufficient motivation to use
the tool, which is likely one reason they often stop using it after some time [Li
et al., 2010]. This emphasizes the importance of understanding users’ needs and
expectations about how self-monitoring tools should work and what measures
they should track, to increase the chance people are trying such a tool and using
it over extended periods.

Lack of data context. Most tools we found miss the opportunity to provide
the user with a more holistic understanding and context of the multi-faceted
nature of work, as they only collect data about a single aspect, e.g., the programs
used on the computer [Choe et al., 2014; Epstein et al., 2016a]. This makes it

178
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

difficult for users to find correlations between data sets and, thus, limits the
insights they can get. Behavior change cannot be modelled based on just a few
variables, as the broader context of the situation is necessary to better understand
the various aspects influencing work behavior and productivity [Bartram, 2015;
Huang et al., 2016]. To overcome this, Huang et al. [2016] propose to integrate
these self-monitoring approaches into existing processes or tools and place them
into an already existing and well-known context which makes it easier for users
to engage in an ongoing tool use. Choe et al. [2014] further suggest to track
many things when users first start a self-monitoring initiative, and then let them
decide which measures are necessary for their context to reflect and improve
their behavior.

Difficulties in interpreting the data. Choe et al. [2014] and Huang et al.
[2016] argue how difficulties in making sense of, organizing or interpreting the
data result in a lower adoption of self-monitoring approaches, as users will stop
using them. For example, Galesic and Garcia-Retamero [2011] found that more
than 40% of Americans and Germans lack the ability to understand simple
graphs, such as bar or pie charts, which could be a problem for self-monitoring
tools as they often visualize the data. To overcome this issue, Bentley et al. [2013]
propose to provide insights from statistically significant correlations between
different data types in natural language, which helped participants in the study
to better understand the data. Another problem to efficiently interpret data in
personal informatics systems is information overload, as described by Jones and
Kelly [2017]. They found that users generally have a higher interest in multi-
faceted correlations (correlations between two distinct data categories), rather
than uni-faceted correlations, that reveal “surprising” and “useful” information.
Hence, this could help to reduce information overload and provide more relevant
insights to users.

Privacy Concerns. Another potential pitfall of self-monitoring tools is data
privacy, as many users are afraid the data might have a negative influence on
their life, such as fearing their managers may know how well they sleep, or that
their insurance agency can track their activity. Most privacy concerns can be
reduced by letting users decide what and how they want to share their data, by

6.3 Phase 1 Method: Identifying Design Elements 179

obfuscating sensitive data when it is being shared, by abstracting visualizations,
and by letting users opt-out of applications when they think the gained benefits
do not outweigh the privacy risks [Begole et al., 2002; Mathur et al., 2015].

Besides learning more about software developers’ expectations of and ex-
perience with a self-monitoring tool for work and productivity, we used our
iterative, feedback-driven development process and a survey to investigate how
these barriers could be tackled. Based on the findings, we incorporated the
identified design elements into our self-monitoring approach PersonalAnalytics
and then used it to evaluate how the design elements affect developers’ awareness
on work and productivity. Subsequently, we distilled design recommendations
for building self-monitoring tools for developers’ work.

6.3 Phase 1 Method: Identifying Design Elements

To identify design elements for building personalized awareness tools for self-
monitoring software developers’ work, we defined the following research question:

RQ1: What information do software developers expect and need to be aware
of and how should this information be presented?

To answer this research question, we first reviewed literature of design practices
applied in existing self-monitoring tools and of measures that software developers
are interested in. We also studied the barriers related work has identified towards
the adoption of self-tracking technologies at the workplace, as described in
the previous section. Based on our review, we defined design elements and
incorporated them into our own self-monitoring prototype for work, called
PersonalAnalyticspilot. We then studied software developers’ use of and experience
with PersonalAnalyticspilot at work, and refined the design elements and tool
based on feedback we received through five pilots and a survey.

In what follows, we describe the goals, method and participants of this first
phase. Table 6.1 shows an overview of the pilots and survey that we conducted and

180
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

Table 6.1: Overview of the Two-Phase Study Describing the Method, Participants,
their Employer and Study-Durations.

ID # Developers Location

Pilots 20 2-4 work weeks

Pilot 1 6 A ca. 3000 Canada 2 work weeks

Pilot 2 2 B ca. 150 Canada 2 work weeks

Pilot 3 3 C 4 Switzerland 2 work weeks

Pilot 4 5 D ca. 50000 USA 4 work weeks

Pilot 5 4 A ca. 3000 Canada 3 work weeks

Initial Survey 413 D ca. 50000 USA sent out 1600 invitations

ID # Developers Location

Field Study 43 D ca. 50000 USA 3 work weeks

Email Feedback 34 arbitrarily during the study

Intermed. Feedback Survey 26 after the first week

Data Upload 33 at the end of the study

Final Survey 32 following the data upload

Method # Partic.
Company

Duration/Timing

Phase 1: Identification of Design Elements for Self-Monitoring at Work

(iterative, feedback-driven development of WorkAnalytics)

Phase 2: Evaluation of the Design Elements for Self-Monitoring at Work

(using WorkAnalytics as a technology probe)

Company
Method Duration# Partic.

situates them within the whole study procedure. The supplementary material 1

contains a list of questions for all surveys and interviews that we conducted as
well as screenshots of how PersonalAnalyticspilot looked like at various stages
until the final version.

6.3.1 Pilots

To examine the features and measurements software developers are interested
in and engage with for self-monitoring their work from using them in practice,
rather than from doing this hypothetically through an interview or survey, we
conducted a set of pilots. Our method has strong similarities to the Design
Based Research process, where the focus is an iterative analysis, design and im-
plementation, based on a collaboration between practitioners and researchers in a
real-world setting that leads to design principles in the educational sector [Brown,
1992]. First, we implemented a self-monitoring prototype, PersonalAnalyticspilot,
incorporating visualizations of work-related measures that we identified to be of

1https://doi.org/10.5281/zenodo.884051

https://doi.org/10.5281/zenodo.884051

6.3 Phase 1 Method: Identifying Design Elements 181

interest to software developers in previous research from running a survey with
379 participants [Meyer et al., 2014]. We then conducted a total of five pilots at
four companies (see Phase 1 in Table 6.1 for more details). For each pilot, we
had a small set of software developers use PersonalAnalyticspilot in situ, gather
their feedback, and use it to refine and improve the prototype before running the
next pilot. Each pilot study ran between 2-4 work weeks. To gather feedback, we
conducted interviews with each participant at the end of the pilot period. These
interviews were semi-structured, lasted approximately 15 minutes, and focused
on what participants would like to change in the application and what they
learnt from the retrospection. To find and address problems early during the
development, we also conducted daily 5 minute interviews with each participant
during the first three pilots. In these short interviews, we gathered feedback on
problems as well as changes they would like to be made to the application, and
feedback on the visualizations, their representativeness of participants’ work and
their accuracy. Throughout this phase, we rolled out application updates with
bug-fixes, updated visualizations and new features every few days. We prioritized
user requests based on the feasibility of implementation and the amount of
requests by participants. After 5 pilots we decided to stop since we did not
gather any more new feedback and the application was running stable.

Participants. For the pilots, we used personal contacts and ended up with
a total of 20 professional software developers, 1 female and 19 male, from four
different companies of varying size and domains (Table 6.1). 30% reported their
role to be a team lead and 70% an individual contributor—an individual who
does not manage other employees. Participants had an average of 14.2 years
(±9.6, ranging from 0.5 to 40) of professional software development experience.

6.3.2 Initial Survey

Following the pilot studies, we conducted a survey 1) to examine whether the
measures and features that developers are interested in using for self-monitoring
within the target company (company D) overlap with what we had implemented,
2) to learn how the PersonalAnalyticspilot needed to be adapted to fit into the
target company’s existing technology set-up and infrastructure, as well as 3) to

182
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

generate interest in participating in our field study. In the survey, we asked
software developers about their expectations and the measurements that they
would be interested in for self-monitoring their work. We advertised the survey at
company D, sending invitation emails to 1600 professional software developers. To
incentivize participation, we held a raffle for two 50 US$ Amazon gift certificates.
The initial survey questions can be found in the supplementary material. To
analyze the survey, we used methods based on Grounded Theory [Strauss and
Corbin, 1998] to analyze the textual data that we collected. This included
Open Coding to summarize and label the responses, Axial Coding to identify
relationships among the codes, and Selective Coding to factor out the overall
concepts, related to what measurements and features participants expect and
how their work environment looks like.

Participants. From the 1600 invitation emails, we received responses from
413 software developers (response rate: 25.8%), 11% female, 89% male. 91.5% of
the participants reported their role to be individual contributor, 6.5% team lead,
1 manager (0.2%), and 1.8% stated they are neither. Participants had an average
of 9.6 years (±7.5, ranging from 0.3 to 36) of professional software development
experience.

6.4 Phase 1 Results: Identified Design Elements

To answer our first research question (RQ1), we analyzed related work, investi-
gated developers’ experience with pilots of PersonalAnalyticspilot and analyzed
the initial survey. The analysis showed that a design for a work self-monitoring
approach should: A) support various individual needs, B) foster active user
engagement, and C) provide multi-faceted insights into work. We incorporated
these three design elements into a technology probe, PersonalAnalytics.

PersonalAnalytics was built with Microsoft’s Dot.Net framework in C#
and can be used on the Windows 7, 8 and 10 operating system. We created
PersonalAnalytics from the ground up and did not reuse an existing, similar
application, such as RescueTime [2019], as we wanted to freely extend and
modify all features and measurements according to our participants’ feedback. A

6.4 Phase 1 Results: Identified Design Elements 183

Figure 6.2: Screenshot of the Daily Retrospection in PersonalAnalytics.

screenshot of the main view of the application, the retrospection, is shown in
Figure 6.2. We open-sourced PersonalAnalytics, opening it up to contributions
on GitHub 2.

6.4.1 A: Supporting Various Individual Needs

Measurement Needs. The analysis of our initial survey showed that partic-
ipants are generally interested in a large number of different measures when
it comes to the self-monitoring of work. We asked survey participants to rate
their interest in a list of 30 work related measures on a five point Likert-scale
from ‘extremely interesting’ to ‘not at all interesting’. We chose these measures
based on our findings from the pilot phase, on what we were capable to track,
and on related work. The list includes measures on time spent in programs,
meetings, and specific activities, the amount of code written, commits done, code
reviews completed, emails sent and received, and the amount of interruptions
experienced and focus at work. Each measure had at least 20% and up to 74% of
the participants that rated it as very or extremely interesting. At the same time
the combination of measures that each participant was interested in varied greatly

2https://github.com/sealuzh/PersonalAnalytics

https://github.com/sealuzh/PersonalAnalytics

184
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

across participants. For instance, only 6 of the 30 measures were rated as very or
extremely interesting by 60% or more, and 52% of participants were interested in
nearly all measures while 25% only wanted very few measures for self-monitoring
at work. Overall, the greatly varying interest and the interest in a large number
of measures for self-monitoring supports earlier findings by Meyer et al. [2014] in
the work domain and Choe et al. [2014] in the activity and health domain. The
complete list of the 30 work related measures, including participants’ ratings
about their interest in the measures, can be found in the supplementary material.

To support these individually varying interests in work measures, we included
a wide variety of measures in our application and allowed users to individually
select the measures that were tracked and visualized. To capture the relevant
data for these measures, PersonalAnalytics features multiple data trackers: the
Programs Used tracker that logs the currently active process and window titles
every time the user switches between programs or logs ‘idle’ in case there was no
user input for more than 2 minutes; the User Input tracker, to collect mouse clicks,
movements, scrolling and keystrokes (no key-logging, only time-stamp of any
pressed key); and, the Meetings and Email trackers, to collect data on calendar
meetings and emails received, sent and read, using the MicrosoftGraphApi [2019]
of the Office 365 Suite.

The initial version only included the Programs Used tracker, similar to
RescueTime [2019]. The Programs Used tracker allows the extraction of a
multitude of measurements participants wished, including the time spent in
specific programs and activities, such as development related activities (e.g.,
coding, testing, debugging, version control, and development projects worked on)
and researching the web, as well as specific code files and documents worked on
and websites visited. After the first two pilots, the User Input tracker was added,
since 3 of the first 8 participants were interested in knowing when they were
producing (e.g., typing on the keyboard) and consuming (e.g., scrolling through
text with the mouse) data. Running the initial survey highlighted participants’
interest in knowing more concrete details about their collaborative activities,
such as planned and unplanned meetings (41%), reading and writing emails
(44%), and doing code reviews (47%), which is the reason they were added to

6.4 Phase 1 Results: Identified Design Elements 185

the final version of PersonalAnalytics before running the field study.
Privacy Needs. A re-occurring theme during the pilots and initial survey

was participants’ need to keep sensitive workplace data private. Participants
feared that sharing data with their managers or team members could have severe
consequences on their employment or increase pressure at work. To account for
privacy needs at work, PersonalAnalytics stores all logged data only locally on
the user’s machine in a local database, rather than having a centralized collection
on a server. This enables users to remain in control of the captured data. To
further support the individual needs, the application provides actions to enable
and disable data trackers manually, pause the data collection and access (and
alter) the raw dataset, which was done by two participants during the field study.

6.4.2 B: Active User Engagement

To be able to generate deeper insights on a user’s work and productivity and
encourage users to actively reflect upon their work periodically, we decided to
include a self-reporting component. Several participants of our initial survey
stated interest in self-reporting some data about work that cannot be tracked
automatically, in particular more high-level measures on productivity. Further-
more, related work found that users rarely engage by themselves with data
captured in a self-monitoring tool, which reduces awareness and chances of posi-
tive change [Collins et al., 2014; Huang et al., 2016; Kim et al., 2016]. To address
this point, we added a pop-up to our application that appeared periodically,
by default once per hour3, and prompted users to self-report their perceived
productivity, the tasks they worked on, the difficulty of these tasks and a few
other measures. During the first two pilots of our iterative development phase,
we found that while the self-reporting might be valuable, it took participants
several minutes to answer, and 45% of our participants reported it to be too
intrusive, interrupting their work, and decreasing their productivity. As a result,

3This interval was chosen as a way to balance intrusiveness. While the first two pilots had
an interval of 90 minutes which made it harder for participants to remember what exactly
happened in that period, most participants preferred to reflect on their productivity once an
hour.

186
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

Figure 6.3: Screenshot of the Self-Reporting Pop-Up to Collect Perceived Pro-
ductivity Data and Engage Users.

many participants regularly postponed the pop-up or disabled it, which then
resulted in less meaningful observations to be presented in the visualization and
a smaller satisfaction by participants.

To minimize intrusiveness, yet still encourage periodic self-reflection, we
reduced the number of questions in the pop-up to a single question that asks
participants to rate their perceived productivity on a 7-point Likert-scale (1:
not at all productive, 7: very productive) once per hour. Participants were
able to answer the question with a single click or keystroke. See Figure 6.3 for
a screenshot of the pop-up. In case the pop-up appeared at an inopportune
moment, participants were able to postpone it for a few minutes, an hour or
a whole work day. To further adapt the self-reports to individual preferences,
each participant was able to alter the interval at which pop-ups appeared or
disable/enable it.

6.4.3 C: Enabling More Multi-Faceted Insights

Related work found that self-monitoring tools often fail to provide sufficient
contextual information and a more holistic picture of the monitored behavior
that also allows the user to relate the data [Bartram, 2015; Choe et al., 2014;
Huang et al., 2016]. Similarly, 35% of pilot study participants asked for weekly
summaries to get a more complete picture of the data and a way to compare and
relate different work days or weeks with each other. In the initial survey, 41% of
the participants wished for a visualization to drill down into the data and learn

6.4 Phase 1 Results: Identified Design Elements 187

where exactly they spend their time.
To address this requirement of enabling a more complete picture of the data

in our application, we focused on three aspects: providing sufficient contextual
information, allowing to get a higher-level overview, and providing ways to relate
various data with each other. To provide sufficient contextual information, we
added several visualizations to the daily retrospection that illustrate how the
time of a work day was spent:

• Top Programs Used: Pie chart displaying the distribution of time spent
in the most used programs of the day (Figure 6.2A).

• Perceived Productivity: Time line illustrating the user’s self-reported
productivity over the course of the day (Figure 6.2B).

• Email Stats: Table summarizing email related data, such as number of
emails sent & received in a work day (Figure 6.2C).

• Programs & Productivity: Table depicting the seven most used pro-
grams during the day and the amount of time the user self-reported feeling
productive versus unproductive while using them (Figure 6.2D).

• Time Spent: Table showing a detailed break-down of how much time was
spent on each information artefact during the work day, including websites
visited, files worked on, emails sent/read, meetings in the calendar, as well
as code projects and code reviews worked on (Figure 6.2E).

• Active Times: Line chart visualizing the user’s keyboard and mouse input
over the course of the day. We aggregated the input data by assigning
heuristic weights to each input stream that we determined based on our
own experience and trials in pilots, e.g., one mouse click has approximately
as much weight assigned as three key strokes (Figure 6.2F).

• Longest Time Focused: Minutes that a user spent the longest inside
any application without switching (Figure 6.2G).

188
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

For a higher-level overview, we added a weekly summary of the data, which
shows how often which programs were used on each day of the week, the average
self-reported productivity per day, and the productive versus unproductive time
spent on the 7 most used programs during the week (same as Figure 6.2E). The
supplementary material contains a screenshot of the weekly retrospection.

Finally, to ease the correlation of data, as desired by 19% of the participants
in the initial survey, we implemented a feature that allows users to pick days
or weeks (Figure 6.2H) and compares them with each other side-by-side and
we provide a view that correlates the most used programs during a day with
productivity (Figure 6.2D). In addition to these features, we automatically gen-
erated personalized insights. Personalized insights are automatically generated
aggregations and correlations within the captured data and presented in nat-
ural language. These personalized insights are similar to the correlation and
presentation of data that Bentley et al. [2013] have shown to increase users’
understanding of complex connections in the area of health-monitoring and
well-being. To create the personalized insights, we first created a matrix where
we correlated each measure with itself (i.e. average per day), with the time of the
day (i.e. morning/afternoon), and with the productivity self-reports. To avoid
information overload, we just selected insights that might be interesting to users
by discarding simple insights from the matrix that were already easily perceptible
in the retrospection (e.g., the number of emails sent per day or user input over
the day) and removed one insight that we could not produce due to the format
of the collected data (number of emails sent/received over the day). For each
pair, we created one or more sentences that correlate the items with each other.
For example, from the pair ’self-reported productivity’ and ’time of day’, we
created the sentence: “You feel more productive in the [morning/afternoon]”
(insight 14). Three of these personalized insights address the participants’ focus,
which is an abstracted measure for the time spent in a single program before
switching to another program. Participants were aware of the definition of focus,
as one of the visualizations in the daily retrospection used the same abstraction
and included a definition (Figure 6.2G). We created these personalized insights
individually for each user and filtered the ones that were not feasible, e.g., due to

6.5 Phase 2 Method: Evaluating Design Elements 189

participants disabling certain data trackers. Since we wanted to ensure to collect
sufficient data before generating these personalized insights and also ensure that
they are reasonable, we only included them in the final survey, after users shared
their data logs with us. Table 6.3 presents a list of the 15 personal insights
that resulted from this process. The matrix we created to select these insights
is available and discussed in the supplementary material. Future versions of
PersonalAnalytics will include the automatic generation of such personalized
insights.

6.5 Phase 2 Method: Evaluating Design Elements

To evaluate the design elements, and learn how software developers are using and
appreciating the identified features and measurements in practice, we formulated
a second research question:

RQ2: How do software developers use the measurements and features based
on the identified design elements during their work and what is their impact?

To answer the research question, we conducted a field study with Personal-
Analytics as a technology probe that implements the previously discussed design
elements.

6.5.1 Participants

We recruited participants for this study by contacting the 160 software developers
at company D that took our initial survey and indicated their interest in partici-
pating. 33 of the 43 participants that signed the consent form were recruited
through this follow-up email, and 10 participants were recruited through recom-
mendations from other participants. The only requirements for participating
in the study were to be a software developer and to be using a work machine
with the Windows operating system. Participants were given two 10 US$ meal
cards at the end of the study for compensating their efforts and were promised
personalized insights into their work and productivity. All 43 participants are
professional software developers working in the same large software company

190
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

(company D in the pilots), three of them were female and 40 male. The roles,
team sizes and projects varied across the participants. 96.7% stated their role to
be an individual contributor and 3.3% team lead. Participants had an average
of 9.8 years (±6.6, ranging from 0.5 to 30) of professional software development
experience. To avoid privacy concerns, we identified participants with a subject
id and therefore could not link their responses between the different feedback sur-
veys, emails, and collected data from PersonalAnalytics. To get feedback on the
usefulness of the different design elements from different perspectives, we picked
participants with and without previous experience with other self-monitoring
tools, such as Fitbit [2019] or RescueTime [2019].

6.5.2 Procedure

We designed this field study to last three work weeks. At the beginning of the
period, we provided participants with detailed information on the study procedure,
the data we were going to collect, and the features of PersonalAnalytics. We
then asked participants to install the application on their work machine, continue
their regular work day and answer the periodic self-reports when they appeared,
by default every 60 minutes. We asked them to contact us via email at any point
in time in case they run into an issue, had questions, or suggestions, which 34
participants did once or more. At any point throughout the study, participants
were able to change the time period or disable the pop-up completely. Participants
could also enable or disable any trackers that logged data for presentation in the
retrospection. After the first week, we sent out a short, intermediate feedback
survey to collect early feedback on the usefulness, suggestions for improvement,
and participants’ engagement with PersonalAnalytics. 26 participants responded.
The timing was chosen to make sure participants had used the application for
at least 3 to 5 work days, and the tool had captured enough data to show
visualizations from various work days.

Shortly before the end of the three work weeks of the study, we asked
participants to share the data that PersonalAnalytics logged on their machine—
the reported productivity ratings and the computer interactions—if they were
willing to. We also gave each participant the opportunity to obfuscate any

6.5 Phase 2 Method: Evaluating Design Elements 191

sensitive or private information that was logged, such as window titles or meeting
subjects, before uploading the data to our secured server. Of the 43 participants,
33 participants shared their data with us, and three of them obfuscated the data
before the upload. Due to the sensitivity of the collected data, we did not try to
convince participants to share the data and just mentioned the additional insights
they would receive when sharing it. We then used the data to automatically
generate aggregations and correlations within an individual participant’s data,
which we will call personalized insights in the following. At the end of the study
period, we asked participants to fill out a final survey, independently of whether
they uploaded the data or not. The survey contained questions on feature usage
and usefulness, possible improvements, potential new measures, and perceived
changes in awareness about work and behavior. For participants that shared
the collected data with us, the survey also presented the personalized insights,
automatically generated for each participant, and questions about them. 32
of the 43 participants participated in the final survey, including 5 that had
not previously shared their computer interaction data. The questions from the
intermediate survey and final survey can be found in the supplementary material.

6.5.3 Data Collection and Analysis

Throughout the field study, we collected qualitative and quantitative data from
participants. In particular, the responses to the intermediate feedback survey,
final survey, feedback received via email, and the data that PersonalAnalytics
collected. Similar to our approach in the initial survey, we used methods common
in Grounded Theory. In this case, the Axial Coding step was also used to
identify higher level themes after Open Coding each feedback item separately.
Besides creating personalized insights from the collected computer interaction
data, we used it to analyze participants’ engagement with the retrospection and
the answering of the experience sampling productivity pop-up. The computer
interaction data span over a period of between 9 and up to 18 work days
(mean=13.5, ±2.6). The findings from analyzing the quantitative and qualitative
data of our participants are discussed and distilled into design recommendations
in the next section.

192
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

6.6 Phase 2 Results: Design Recommendations Based
on Evaluating Design Elements

To answer the second research question (RQ2), we focus our analysis of the data
collected about the use of PersonalAnalytics. For each part, we first present the
findings before summarizing the design recommendations that we inferred from
interpreting the results. The design recommendations are mapped to one of the
three design elements (A to C) and are presented in blue boxes to distinguish
them from the findings.

6.6.1 Different Granularity of Visualizations

Most participants (70.4%) agreed that the collected data and measures were
interesting and relevant to them. Participants valued that the retrospection
allowed them to get a high-level overview of the data and also let them drill
down into more detail:

“Sift through all this information and quickly find what’s critical and be able to
determine what is furthering one’s goals and what [is] not (i.e. is a distraction).” -
F19

Participants used, for instance, the pie chart on the programs executed
(Figure 6.2A) and the active times timeline (Figure 6.2F) to get an aggregated
overview of the past work day, in particular which activities most time was spent
on and the most active and inactive times during the day, respectively. When
they wanted to further investigate their day and find out more specific details,
participants appreciated the availability of other visualizations:

“I like that [WorkAnalytics] captures who I am talking with in Skype or Google
Hangouts [. . .]. I like the integration of Outlook in more detail.” - F42

Several participants (F13, F17, F18) reported having used the time spent table
(Figure 6.2E) regularly to gain deeper insights on with whom they communicate—
through email, instant messaging and meetings—and on which artefacts they
spent time—document, website, code file, or email.

6.6 Phase 2 Results: Design Recommendations Based on Evaluating Design Elements193

Design Recommendation A.1: For self-monitoring at work users are in-
terested in a quick as well as deep retrospection on their work that are best
supported through high-level overviews with interactive features to drill-down
into details.

6.6.2 Interest in Diverse Set of Measurements

Participants had varying interests in the positive, negative or neutral framing
of the data. For instance, while some participants (F19, F25) wanted to learn
about what went well, such as the tasks they completed and how much they
helped their co-workers, others were more interested in understanding what went
wrong:

“[. . .] focus more on things that prevent someone from being able to add business
value, rather than arbitrary metrics like commit count, bug count, task completion,
etc. [. . .] I would prefer [the application] to track things that I felt got in the way
of being productive.” - F17

This framing effect in self-monitoring tools has recently been explored by Kim
et al. [2016], where they found out that only participants with a negative framing
condition improved their productivity, while positive framing had little to no
impact.

Most participants (69%) wanted WorkAnalytics to collect even more data on
other aspects of their work to further personalize and better fit the retrospection
to their individual needs. For instance, they wanted more detailed insights into
collaborative and communicative behaviors by integrating data from and sharing
data with other team members (6%) and generating insights into the time spent
on technical discussions or helping co-workers (6%). Participants were further
interested in collecting data from other work devices (13%), capturing even more
coding related data (6%), such as tests and commits, or more high-level measures,
such as interruptions or progress on tasks (9%). 80% of the participants were
also interested in biometric data, such as heart rate or stress levels, 70% were
interested in physical activity data, such as sleep or exercise, and 50% were

194
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

interested in location based data, such as commute times or visited venues; all in
combination with the already collected work data. Similarly, roughly one third
of the participants suggested to extend the daily and weekly retrospection, by
adding additional visualizations and finer-grained aggregations, to better support
them in making observations based on correlations and combinations of several
measurements:

“[The] active times graph would be neat on the weekly retrospection so that I could
get a sense of my most active time of the day without having to navigate through
each day.” - F43

These very diverse requests for extendingWorkAnalytics with further measures
and visualizations emphasize the need for personalizing the experience, to increase
satisfaction and engagement.

Design Recommendation A.2: For self-monitoring one’s work, users are
interested in a large and diverse set of data, even from outside of work, as
well as in correlations within the data.

6.6.3 Increasing Self-Awareness with Experience Sampling
Participants actively engaged in the brief, hourly self-reports on productivity
when they were working on their computer. Over the course of the study,
participants self-reported their productivity regularly, on average 6.6 times a day
(±3.8, min = 1, max = 23) and it usually took them just a couple of seconds,
without actually interrupting their work. Two (6%) participants even increased
the frequency to answer the pop-up every 30 minutes, while 3 (9%) of the 33
participants, from whom we received data, disabled the self-reports. This shows
that the experience sampling method we applied was not considered as too
intrusive for most participants.

Being asked in the final survey about the value of and experience with self-
reporting their productivity, 59.2% of the participants agreed or strongly agreed
that the brief self-reports increased their awareness on productivity and work
(see Table 6.2 for more detail). The self-reports helped participants to realize
how they have spent their past hour at work and how much progress they have
made on the current task:

6.6 Phase 2 Results: Design Recommendations Based on Evaluating Design Elements195

“It makes me more conscious about where I spent my time and how productive I
am.” - F08

Some participants used the pop-up to briefly reflect on whether they have
used their time efficiently or not, and if they should consider changing something:

“The hourly interrupt helps to do a quick triage of whether you are stuck with some
task/problem and should consider asking for help or taking a different approach.” -
F11

The fact that PersonalAnalytics does not automatically measure productivity,
but rather lets users self-report their perceptions, was further valued by partici-
pants as some do not think an automated measure can accurately capture an
individual’s productivity, similar to what was previously found by Meyer et al.
[2017a]:

“One thing I like about [WorkAnalytics] a lot is that it lets me judge if my time
was productive or not. So just because I was in a browser or VisualStudio doesn’t
necessarily mean I was being productive or not.” - F42

“I am much more honest about my productivity levels when I have to self-report,
[rather] than if the software simply [. . .] decided whether or not I was productive.”
- F15

These findings suggest that using experience sampling is a feasible method to
manually collect data as long as users have a benefit from their self-reporting.

Design Recommendation B.1: Experience sampling in the form of brief
and periodic self-reports are valuable to users as they increase the awareness
of their work and productivity, and lead to richer insights.

6.6.4 Increasing Self-Awareness with a Retrospection

Participants frequently accessed the daily retrospection, yet the patterns of
self-monitoring varied greatly across participants. On average, participants
opened the retrospection 2.5 times per day (±3.5, min=0, max=24) for a total
of 0.85 minutes (±2.95, min=0, max=42.9), but both aspects varied a lot across

196
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

participants as the standard deviation (±) and the minimum and maximum
show. All participants opened the retrospection more often in the afternoon
(mean=1.9) than in the morning (mean=0.6). Yet, 34% of participants opened
the application less than 5 times over the whole study period, while 28% used
the retrospection at least once a day. Also, while 31% of participants mostly
focused on the current day, the other 69% looked and compared multiple work
days. Many participants also looked at the weekly retrospection, but access to
this one was less often than to the daily one.

While these results show that most participants were actively reflecting about
their work using the retrospection, we also received feedback from 2 participants
(6%) that they sometimes forgot the retrospection was available:

“I forgot I could even look at the retrospection! A new pop-up, maybe Friday
afternoon or Monday morning prompting me to review the week’s data would be
really nice.” - F14

Overall, the retrospection increased the awareness of the participating software
developers and provided valuable and novel insights that they were not aware of
before. Overall, participants commented on the retrospection providing novel
insights on a variety of topics, such as how they spend their time at work
collaborating or making progress on tasks, their productivity over the course of
the day, or the fragmentation and context switches at work:

“Context switches are not the same as program switches, and I do *lots* of program
switches. I still do a lot more context switches than I thought, but it doesn’t hurt
my perceived productivity.” - F36

“[The] tool is awesome! It [. . .] helped confirm some impression I had about my
work and provided some surprising and very valuable insights I wasn’t aware of. I
am apparently spending most of my time in Outlook.” - F42

Reflecting about the time spent at work further helped participants to sort
out misconceptions they had about their work:

“I did not realize I am as productive in the afternoons. I always thought my
mornings were more productive but looks like I just think that because I spend more
time on email.” - F14

6.6 Phase 2 Results: Design Recommendations Based on Evaluating Design Elements197

Table 6.2: Survey Responses on Awareness Change.
Strongly

agree
Agree Neutral Disagree

Strongly

disagree
N/A

The collected and visualized data is relevant to me. 18.5% 51.9% 22.2% 7.4% 0.0% 0.0%

I learned something about my own work

and perceived productivity by looking at

the retrospection and reflecting.

29.6% 29.6% 25.9% 11.1% 0.0% 3.7%

Answering the perceived productivity pop-up

questions increased my awareness about my

work and perceived productivity.

18.5% 40.7% 25.9% 7.4% 7.4% 0.0%

Installing and running the tool raised my awareness

about my work and perceived productivity.
22.2% 59.3% 11.1% 3.7% 3.7% 0.0%

I used the daily retrospection to reflect about

my past work day.
11.1% 37.0% 11.1% 29.6% 7.4% 3.7%

I used the weekly retrospection to reflect

about my past work week.
11.5% 30.8% 23.1% 23.1% 7.7% 3.8%

The retrospection helps me to learn how I

spend my time.
29.6% 55.6% 0.0% 11.1% 0.0% 3.7%

The retrospection helps me to learn more

about my perceived productive times.
25.9% 33.3% 25.9% 7.4% 3.7% 3.7%

I now know more about why and when

I feel I am productive or unproductive.
22.2% 40.7% 14.8% 18.5% 3.7% 0.0%

I tried to change some of my habits or patterns based

on what I learned from reflecting about my work. 14.8% 25.9% 11.1% 40.7% 3.7% 3.7%

The survey responses that are presented in Table 6.2 and are based on a
5-point Likert-scale (5: strongly agree, 1: strongly disagree) further support these
findings. 81.5% of all survey participants reported that installing and running
the application increased their awareness, and 59.2% agreed or strongly agreed
that they learnt something about their work and productivity, while only 11.1%
did not. The responses also show that the retrospection helped participants in
particular to learn how they spend their time (85.2% agreed or strongly agreed)
and about productive and unproductive times (62.9%).

Design Recommendation B.2: Reflecting about work using a retrospective
view provides novel and valuable insights and helps to sort out misconceptions
about activities pursued at work.

198
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

6.6.5 Personalized Insights

The personalized insights that we presented to 27 of the 32 participants in
the final survey are based on the same measurements as the ones that are
visualized in the retrospection. These insights were created based on correlations
and aggregations within the collected data and presented as natural language
sentences. The specific insights are presented in Table 6.3 and details on their
creation can be found in Section 6.4.3. To learn more about the value of the
visualizations and the natural language insights, we asked participants to rate
the novelty of each personalized insight. Participants’ responses were mixed
with respect to the novelty of the automatically generated personalized insights
that presented correlations and aggregates within the data in natural language.
When rated on a scale from ‘extremely novel’ to ‘not novel at all’, only 5 of the
15 personalized insights (see personalized insights in Table 6.3 marked with an
asterisk ‘*’) were rated as ‘very novel’ or ‘extremely novel’ by more than half of the
participants. This means that participants gained knowledge about most insights
either before or during the study. The five insights that were rated as ‘very novel’
or ‘extremely novel’ by more than half of the participants are all correlations
between two distinct data categories, so called multi-faceted correlations [Jones
and Kelly, 2017], rather than simple aggregates, called uni-faceted correlations,
which are easier to understand from simple visualizations [Bentley et al., 2013;
Galesic and Garcia-Retamero, 2011]. One participant also suggested to integrate
these novel personalized insights into the retrospection since it was easier to
draw connections between two distinct data categories using natural-language
statements, similar to what Bentley et al. [2013] found. Research by Jones
and Kelly [2017] has shown that multi-faceted correlations presented by self-
monitoring tools are of higher interest to users than uni-faceted correlations.
Paired with our findings above, this suggests to use visualizations for presenting
uni-faceted correlations and to present more complex multi-faceted correlations
using natural language sentences. Future work could further investigate the
effectiveness of these personalized insights and their impact on behavior at work.

6.6 Phase 2 Results: Design Recommendations Based on Evaluating Design Elements199

Table 6.3: Participants’ Ratings on the Novelty and Potential for Behavior
Change of Personalized Insights.

extremely very somewhat not yes no dk

1. The program you spend most time is X, followed by Y. 4.0% 16.0% 36.0% 44.0% 24.0% 68.0% 8.0%

2. The program you switch to the most is X. 11.5% 30.8% 34.6% 23.1% 23.1% 65.4% 11.5%

3. You spend X% of the time on your computer in program X, Y, and Z. 0.0% 32.0% 32.0% 36.0% 28.0% 60.0% 12.0%

4. X is the program you focus on the longest. 17.4% 21.7% 26.1% 34.8% 17.4% 73.9% 8.7%

5. You feel [more/less] productive when you are focused less. * 23.5% 29.4% 17.6% 29.4% 52.9% 23.5% 23.5%

6. When you feel productive, you spend more time in program X than in Y. 15.0% 20.0% 10.0% 55.0% 30.0% 45.0% 25.0%

7. When you feel unproductive, you spend more time in program X than in Y. * 27.8% 22.2% 22.2% 27.8% 38.9% 38.9% 22.2%

8. You spend more time in Outlook in the [morning/afternoon] than [afternoon/morning]. 4.8% 28.6% 33.3% 33.3% 23.8% 66.7% 9.5%

9. You usually work more focused in the [morning/afternoon]. * 26.1% 30.4% 34.8% 8.7% 52.2% 43.5% 4.3%

10. On average, you spend X hours on your computer per work day. 31.8% 18.2% 22.7% 27.3% 45.5% 40.9% 13.6%

11. You feel more productive on days you spend [more/less] time on your computer. * 23.5% 35.3% 11.8% 29.4% 35.3% 64.7% 0.0%

12. You feel [more/less] productive when you send more emails. 14.3% 14.3% 42.9% 28.6% 35.7% 57.1% 7.1%

13. You feel [more/less] productive when you have more meetings. 10.0% 20.0% 50.0% 20.0% 40.0% 50.0% 10.0%

14. You usually feel more productive in the [morning/afternoon]. 8.7% 34.8% 39.1% 13.0% 39.1% 47.8% 13.0%
15. You usually take X long breaks (15+ minutes) and Y short breaks (2-15 minutes) from your computer per day. * 21.7% 52.2% 17.4% 8.7% 43.5% 47.8% 8.7%

Novelty Behavior Change

Design Recommendation C.1: Present multi-faceted correlations using
natural language, as users often miss them from reflecting with visualizations.

6.6.6 Potential Impact on Behavior at Work

When we explicitly asked participants if they think they actually changed their
behavior during the field study based on the insights they received from using the
application, 40.7% reported that they have changed some of their habits based
on what they learnt from reflecting about their work. Participants mentioned to
be trying to better plan their work (6%), e.g., by taking advantage of their more
productive afternoons, trying to optimize how they spend their time with emails
(13%), or trying to focus better and avoid distractions (19%).

40.7% of the participants self-reported that they did not change their behavior,
either because they did not want to change something (6%) or they were not
sure yet what to change (13%). The latter ones mentioned that they needed
more time to self-monitor their current behavior and learn more about their
habits, and that PersonalAnalytics does not offer much help yet in incentivizing
or motivating them to change their behavior. In particular, participants stated
that the visualizations and correlations were not concrete and actionable enough
for knowing what or how to change:

200
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

“While having a retrospection on my time is a great first step, I gained [. . .]
interesting insights and realized some bad assumptions. But ultimately, my behavior
didn’t change much. Neither of them have much in way of a carrot or a stick.” -
F42

“It would be nice if the tool could provide productivity tips - ideally tailored to my
specific habits and based on insights about when I’m not productive.” - F15

Several participants went on to make specific recommendations for more
concrete and actionable support to motivate behavior change. These recommen-
dations ranged from pop-ups to encourage more focused work, to recommend a
break from work, all the way to intervening and blocking certain applications or
web sites for a certain time:

“If [the tool] thinks I am having a productive day, it should just leave me alone
and not ask any questions. If I am having an unproductive day and [it] can help
me overcome it (e.g., go home and get some sleep) the tool should suggest that.” -
F10

“Warnings if time on unproductive websites exceeds some amount, and perhaps
provide a way for the user to block those sites (though not forced).” - F29

When we explicitly asked participants to rate whether or not the 15 per-
sonalized insights make them think about or plan their work differently, results
indicated that most of the 15 personalized insights are again not actionable enough
to foster a behavior change (see results on the right sight of Table 6.3). The
five insights with the highest potential (between 40% and 52.9% of participants
agreed) are mostly related to work fragmentation and focus on work.

Design Recommendation C.2: Self-monitoring insights often need to be
very concrete and actionable to foster behavior change at work.

6.7 Discussion 201

6.7 Discussion

This section discusses implications that emerged from our study with respect to
long-term user engagement, awareness about team-work and collaborations and,
ultimately, behavior change.

6.7.1 Design for Personalization

One of our goals was to find out whether the expectations of software developers
for a self-monitoring approach are similar or if they are diverging. While existing
commercial self-monitoring tools to quantify our lives, such as the ?, offer only
few options for personalization and are still successful at motivating users to
live a healthier life [Fritz et al., 2014; Mamykina et al., 2008], our results on
self-monitoring at work suggest that personalization is crucial.

In the pilot studies and the field study, participants uniformly expected
different measurements to be visualized at different levels of granularity, similar
to findings in other areas [Koldijk et al., 2011; McDuff et al., 2012]. These
individual expectations might be explained by the very different types of tasks
and work that software developers, even with very similar job profiles, have to
accomplish [Meyer et al., 2017a]. The ability to customize the measurements
that are being captured and how they are visualized is one way to support the
personalization. This customizability could not only foster interest in long-term
usage, as data relevant to the user is available, but could also reduce privacy
concerns that software developers might have.

While many participants were initially skeptical about self-monitoring their
work, we received no privacy complaints and most participants (33 of 43) even
shared their data with us for the analysis. Almost all participants even went
one step further: after a few days of using PersonalAnalytics and becoming
certain that their data is treated confidentially, they started to comment about
possible extensions and additional measures for their self-monitoring at work.
This includes more insights about their collaborative activities with other people,
as discussed in more detail later in this section, but also adding even more
measurements specific to their job as software developers, such as the commits

202
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

they make to the version control tool or insights into their patterns of testing
and debugging code.

While it might seem surprising that developers requested many development-
unrelated measures for self-monitoring their work, this can be explained by
the amount of time they spend with development related activities, on average
between 9% and 21%, versus other activities, such as collaborating (45%) or
browsing the web (17%) [Gonçalves et al., 2011; Meyer et al., 2017a]. As most
study participants (84.6%) were interested to continue using PersonalAnalytics
after the study had ended, we concluded that the initially identified design
elements to support various individual needs, actively engage the user, and
enable more multi-faceted insights are valuable for self-monitoring at work.

6.7.2 Increased Engagement through Experience Sampling

As noted in previous research, many self-monitoring approaches suffer from
an extremely low user engagement with the data [Collins et al., 2014; Huang
et al., 2016; Kim et al., 2016]. For example, RescueTime, which visualizes the
captured data on a dashboard in the browser, was found to be used only a
few seconds per day (mean=4.68 ±12.03) [Collins et al., 2014]. Similar to the
reports in our field study, participants’ reasons for this low engagement might
be that users forget about the availability of the data visualizations. A simple
and periodic reminder, e.g., to let users know that there is a new summary on
the work week, might increase the engagement with these visualizations and
dashboards. Recently, researchers have explored how adding an ambient widget
and presenting a summary of the captured data always visible on the user’s
screen can increase the engagement with the data (e.g., [Collins et al., 2014; Kim
et al., 2016; Whittaker et al., 2016]). For example, the ambient widget by Kim
et al. [2016] increased the use of RescueTime to about a minute a day.

In this paper, we assessed another approach, namely a periodic pop-up to
self-report productivity. Our findings show that the self-report helped users to
quickly reflect on how efficiently they spent their time, which then also resulted
in an increased engagement. Our results show that using experience sampling is a
feasible method to manually collect data that is difficult to capture automatically

6.7 Discussion 203

and is (mostly) appreciated as long as users have a benefit from self-reporting,
e.g., by getting additional or more fine-grained insights. It is up to future work to
determine how long the positive effects of self-reporting or ambient widgets lasts,
whether users might at some point loose interest after having learnt ‘enough’
about their work, and whether it might be beneficial to only include these features
in certain time periods. More research is required to understand how this can be
generalized to other domains.

6.7.3 Actionability for Behavior Change

Most health and sports tracking systems have been shown to foster positive
behavior changes due to increased self-awareness. In our study, 40.7% of the
participants explicitly stated that the increased self-awareness motivated them to
adapt their behavior. While motivating changes in behavior was not a primary
goal, the study gave valuable insights into where and how self-monitoring tools
at work could support developers in the process. The very diverse set of insights
in PersonalAnalytics that participants wished for, made it more difficult to
observe a specific problem behavior and define a concrete, actionable goal for a
behavior change, which is a basic requirement for starting a change according
to the theory of behavior change process TTM [Prochaska and Velicer, 1997].
Rather than just enabling an increased self-awareness, it might also be important
to provide users with concrete recommendations for active interventions and
alerts when certain thresholds are reached. Participants suggested to block
distracting websites after the user spent a certain amount of time on them, or
to suggest a break after a long time without one, similar to what was recently
suggested [Agapie et al., 2016; Epstein et al., 2016a]. At the same time, not all
insights are actionable as developers sometimes have little power to act on an
insight, similar to what Mathur et al. [2015] found from visualizing noise and
air quality at the workplace. As an example, most developers can likely not
just stop reading and responding to emails. Another extension to possibly make
insights more actionable is to let users formulate concrete behavior change goals
based on the insights they make from using the retrospection and experience
sampling component. For example, a user could set a goal to regularly take a

204
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

break to relax or to have an empty email inbox at the end of the day. This goal
setting component could leverage experience sampling further and learn when
and how users are interested and open to receive recommendations of how to
better reach their goal.

Approaches aiming to foster long-term behavior changes need to offer means
to actively monitor and maintain a behavior change [Prochaska and Velicer,
1997] and help avoiding lapses, a frequent reason for abandoning behavior change
goals [Agapie et al., 2016]. In the future we plan to experiment with and evaluate
these different forms of how insights could be improved to make them more
actionable, and then evaluate the longer-term impact of PersonalAnalytics on
software developers’ actual behavior at work.

6.7.4 Benchmarking

A re-occurring feedback by participants was the wish for a way to benchmark
their work behavior and achievements with their team or other developers with
similar job profiles and to improve their work habits based on the comparisons
with others, similar to what was previously described by Wood [1989]. Given
the privacy concerns at work, adding such a component to the self-monitoring
for work could, however, severely increase pressure and stress for users who are
performing below average. Also, given our participants’ interest in a high variety
and large set of work related measures indicates that even within one domain—
software developers in our case—users might work on fairly different tasks and
that it might be impossible to find a ‘fair’ set of measures for comparing and
benchmarking individuals. More research is needed to examine how and in which
contexts such a social feature might be beneficial as well as which aggregated
measures might be used for some sort of comparison without privacy concerns.
For example, one could anonymously collect the data related to developers’
work habits, such as fragmentation, time spent on activities, and achievements,
combine them with job profile details and then present personalized insights and
comparisons to other developers with a similar job profile. One such insight could
be to let the developer know that others spend more time reading development
blogs to educate themselves or that they usually have less meetings in a work

6.7 Discussion 205

week. Besides having anonymous comparisons between developers, it could
further be beneficial to let users compare their work habits with their previous
self, e.g., from one month ago, and enable them to reflect on how their behaviors
change over time. Although research has shown that benchmarking features in
physical activity trackers foster competition with peers to be more active [Fritz
et al., 2014; Rooksby et al., 2014], additional research is needed to determine
whether they also lead to a positive behavior change at the workplace.

6.7.5 Team-Awareness

Even though most insights available within PersonalAnalytics appear to be
about each user’s own work habits, some insights also reveal details about the
individuals’ collaboration and communication patterns with their team and
other stakeholders. These are, for example, insights about their meeting, email,
instant messaging, social networking, and code review behavior. Nonetheless,
participants were interested in even more measures, especially with respect to
revealing (hidden) collaboration and communication patterns within their teams.
Having detailed insights into how the team coordinates and communicates at
work could help developers make more balanced adjustments with respect to
the impact their behavior change might have on their team. For example, being
aware of co-workers’ most and least productive times could help to schedule
meetings at more optimal times, similar to what Begole et al. [2002] suggested for
teams distributed across time zones. Related to an approach suggested by Anvik
et al. [2006] where work items and bug reports were automatically assigned to
developers based on previously assigned and resolved work items, it could be
beneficial for improving the coordination and planning of task assignments by
also taking into account each developer’s current capacity and workload. Being
more aware of the tasks each member of the team is currently working on and how
much progress they are making could also be useful for managers or team leads
to identify problems early, e.g., a developer who is blocked on a task [Jakobsen
et al., 2009] or uses communication tools inefficiently [Storey et al., 2017], and
take appropriate action. A similar approach, WIPDash, has been shown to
improve daily stand-up meetings by providing teams with shared dashboard

206
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

summaries of work items each developer was assigned to and has completed,
as these dashboards increase the awareness about each developer’s progress on
tasks [Jakobsen et al., 2009]. Visualizing the current productivity and focus to
co-workers could prevent interruptions at inopportune moments, where resuming
the interrupted task might be more costly than at a moment of low focus. To
streamline inopportune interruptions at work, Züger et al. [2017] suggested to
visualize the current focus to the team by using a “traffic light like lamp”.

As the envisioned additions and extensions to PersonalAnalytics might in-
crease an individual’s productivity, they might negatively affect the overall team
productivity or the collaboration within teams. For example, a developer who is
stuck on a task cannot ask a co-worker for help that blocks out interruptions.
This is why self-monitoring tools for teams at work could not only motivate a
collective improvement of the team-productivity, but also help to monitor the
success and impact of these changes on other stakeholders. Future work could
explore how self-monitoring at work supports team collaboration, by analyzing
collaboration practices within development teams and comparing them to other
teams. This work could be based on the Model of Regulation, recently intro-
duced by Arciniegas-Mendez et al. [2017], as it helps to systematically evaluate
and understand how teams self-regulate their own tasks and activities, other
team-members, and how they create a shared understanding of their project
goals.

6.8 Generalizability and Limitations

We focused our work on one type of knowledge workers, software developers,
to gather insights into one work domain before generalizing to a broader range
of knowledge workers in the future. Software developers have been referred to
as the knowledge worker prototype as they are often not only the first ones to
use and tweak tools, but also have lower barriers for building and improving
tools themselves [Kelly, 2008]. While software developers experience extensive
interaction and collaboration with co-workers through their computer use, we
believe that many of the observations made from building and evaluating Per-

6.9 Conclusion 207

sonalAnalytics with developers are also helpful for self-monitoring tools in other
work domains, especially since the studied features and most tracked measures
can be re-used in or easily ported to other domains.

The main threat to the validity and generalizability of our results is the
external validity, due to the selection of field study participants that were all
from the same company and had limited gender diversity. We tried to mitigate
these threats by advertising the study and selecting participants from different
teams in the company, at different stages of their project, and with varying
amounts of experience. Participants tested PersonalAnalytics over a duration of
several weeks and were studied in their everyday, real-world work environment
and not in an experimental exercise. Moreover, the development of the application
was designed together with participants from three other companies of varying
size, reducing the chance that we built an application that is just useful for
software developers at one company. Although our findings shed light on how
awareness and engagement can be increased, it is not clear how PersonalAnalytics
affects software developers using it over longer than the three-week period studied.
We are aware that there is a certain self-selection bias towards participants who
are in general more willing to quantify various aspects of their life, and use the
collected data to increase their awareness.

6.9 Conclusion

One way to improve the productivity and well-being of knowledge workers
is to increase their self-awareness about productivity at work through self-
monitoring. Yet, little is known about the expectations of and experience with
self-monitoring at the workplace and how it impacts software developers, one
community of knowledge workers on which we focused. Based on previous work,
an iterative development process with 5 pilot studies and a survey with 413
developers, we factored out design elements that we implemented and refined
with PersonalAnalytics as a technology probe for self-monitoring at work. We
then evaluated the effect of these design elements on self-awareness of patterns
of work and productivity and their potential impact on behavior change with 43

208
Chapter 6. Design Recommendations for Self-Monitoring in the Workplace: Studies in

Software Development

participants in a field study, resulting in design recommendations.
We found that experience sampling, using minimal-intrusive self-reporting,

and the retrospective summary of the data enhances the users’ engagement and
increases their awareness about work and productivity. Participants reported
that by using our self-monitoring approach, they have made detailed observations
into how they spend their time at work collaborating or working on tasks, when
they usually feel more or less productive, and sort out misconceptions they had
about their activities pursued at work, such as spending a surprisingly high
amount of time collaborating with others via email. Our work provides a set of
design recommendations for building self-monitoring tools for developers’ work
and possibly other types of knowledge workers. We discuss potential future
work to further increase engagement with the data and to enhance the insights’
actionability by providing users with recommendations to improve their work,
by adding social features to motivate users to compete with their peers, and by
increasing the team awareness to help teams reduce interruptions, improve the
scheduling of meetings, and the coordination of task assignments.

6.10 Acknowledgements
The authors would like to thank the study participants and the anonymous
reviewers for their valuable feedback. This work was funded in part by Microsoft,
NSERC and SNF.

7
Enabling Good Work Habits in

Software Developers
through Reflective

Goal-Setting

André N. Meyer, Gail C. Murphy, Thomas Zimmermann, Thomas Fritz
Accepted in the 2019 IEEE Transactions on Software Engineering Journal,

Contribution: Study design and execution, participant recruitment, data
collection, data analysis, and paper writing

Abstract

Software developers are generally interested in developing better habits to increase
their workplace productivity and well-being, but have difficulties identifying con-
crete goals and actionable strategies to do so. In several areas of life, such as

210
Chapter 7. Enabling Good Work Habits in Software Developers

through Reflective Goal-Setting

the physical activity and health domain, self-reflection has been shown to be
successful at increasing people’s awareness about a problematic behavior, moti-
vating them to define a self-improvement goal, and fostering goal-achievement.
We therefore designed a reflective goal-setting study to learn more about de-
velopers’ goals and strategies to improve or maintain good habits at work. In
our study, 52 professional software developers self-reflected about their work on
a daily basis during two to three weeks, which resulted in a rich set of work
habit goals and actionable strategies that developers pursue at work. We also
found that purposeful, continuous self-reflection not only increases developers’
awareness about productive and unproductive work habits (84.5%), but also
leads to positive self-improvements that increase developer productivity and
well-being (79.6%). We discuss how tools could support developers with a better
trade-off between the cost and value of workplace self-reflection and increase
long-term engagement.

7.1 Introduction

Software developers are motivated to develop better habits to improve their
productivity and well-being at work [Li et al., 2015; Meyer et al., 2017b; Sharp
et al., 2009]. It is therefore desirable to gain a better understanding of what
good work habits and behaviors are, and how we can support developers with the
identification of self-improvement opportunities to build better and maintain good
habits at work. Prior research has examined developers’ existing work habits,
specifically the time they spend on various activities at work (e.g., [Astromskis
et al., 2017; Gonçalves et al., 2011; Meyer et al., 2017a; Singer et al., 2010; Xia
et al., 2017]), their organization of work into tasks (e.g., [González and Mark,
2004]), and causes of fragmented work (e.g., [Chong and Siino, 2006; Czerwinski
et al., 2004; Mark et al., 2005; Meyer et al., 2017a; Parnin and Rugaber, 2011]).
Recently, researchers have also looked into the attributes and habits of great
software developers [Baltes and Diehl, 2018; Li et al., 2015; Sharp et al., 2009].
They found that one key trait of successful developers is growth orientation,
which means that they are constantly learning and striving to change their
behavior to increase efficiency at work.

7.1 Introduction 211

Goal-setting is one way to foster behavior change, since it allows individuals
to define a target or outcome, and make progress towards their goal [Locke and
Latham, 1990, 2002]. In the context of this work, goals refer to desired target
or outcome habits that developers set for themselves, to improve productivity
and well-being at the workplace. Strategies refer to the system they employ to
make progress towards and eventually reach their goals. However, identifying
concrete and relevant goals can be challenging, which is why an active area of
research is investigating how self-reflection can help individuals to get insights
into positive and negative habits, and support them with the identification
of meaningful goals that motivate positive behavior changes [Brockbank and
McGill, 2007; Kersten-van Dijk et al., 2017,?; Sharot et al., 2011]. This includes
mostly personal areas of life, such as health [Gasser et al., 2006; Monkaresi
et al., 2013], sleep quality [Daskalova et al., 2016; Lee et al., 2017], students’
learning behavior [Johnson and White, 1971; Morisano et al., 2010; Travers
et al., 2015], and physical activity [Herrmanny et al., 2016; Klasnja et al., 2009;
Munson and Consolvo, 2012]. Research more specific to knowledge workers’ work
habits investigated the effects of self-reflection on task completion [Amabile and
Kramer, 2011; Claessens et al., 2010], time management [Pammer et al., 2015],
and detachment from work [Kocielnik et al., 2018; Williams et al., 2018].

While developers generally want to play an active role in setting their own
goals for work [Couger et al., 1990; Enns et al., 2006; Perry et al., 1994b], we
have not been able to find prior work that investigated goals developers set to
improve work habits and productivity. This is why we wanted to study the
goals that developers set for themselves to improve and maintain good habits
at work, the strategies they pursue to achieve those goals, and the impact their
goal-setting has on productivity and well-being. Even though self-reflection
has previously been shown to have great potential to foster goal-identification,
developers rarely reflect on or review their work in practice [Baltes and Diehl,
2018]. Hence, we further aimed to examine whether encouraging developers to
self-reflect continuously on work, results in meaningful insights about work and
leads to any work habit goals and -improvements. In particular, our work seeks
to answer the following research questions:

212
Chapter 7. Enabling Good Work Habits in Software Developers

through Reflective Goal-Setting

RQ1: Which types of goals do developers set for themselves to improve and
maintain good work habits?

RQ2: What are strategies that help developers make progress towards, and
achieve their goals?

RQ3: What is the potential impact of reflective goal-setting on developers’
goal-identification, goal-achievement monitoring, and work habits?

To investigate these research questions, we combined self-reflection and goal-
setting to design a reflective goal-setting study, inspired by the Personal Software
Process (PSP) by Humphrey [1996] and diary studies in other areas of research.
Our study prompts participants on a daily basis to reflect on their work, and
asks them to set concrete goals and actionable strategies for improving their work
habits. 52 professional software developers completed our study and reflected for
two to three work weeks.

Our reflective goal-setting study resulted in a rich set of work habit goals and
strategies that we analyzed. They can be broadly categorized into improving
time management, avoiding deviations from planned work, improving the impact
on the team, maintaining work-life balance, and continuous learning. We found
that continuous self-reflection can be an important step towards productive
self-improvements in the workplace, since participants stated that it supports the
identification of goals (80.8%) and actionable strategies (83.3%). The daily self-
reflections not only increased developers’ awareness about work habits, progress
and achievements (84.5%), but also led to productive (short-term) behavior
changes (79.6%). As a result, while initially being skeptical towards “journaling”
their work, most participants (96.1%) stated afterwards that they could imagine to
continue self-reflecting on a regular basis. Few participants, however, mentioned
that constantly self-reflecting may increase pressure to always perform well
and thus, could turn into a burden without tool support that would make
self-reporting more convenient. Overall, we conclude that continuous reflective
goal-setting can enable developers to improve and maintain good work habits.
We discuss these results with regards to prior work on self-reflection with other
types of knowledge workers, and how tools could support developers with their

7.2 Related Work and Background 213

reflective goal-setting and how they might foster long-term self-reflection.
Our contributions are (1) a set of developers’ good work habit goals and

strategies to improve productivity based on a field-study, and (2) insights into
the use and value of continuous reflective goal-setting, and its ability to support
developers with the identification, monitoring and maintenance of good work
habits that improve productivity and well-being at work.

7.2 Related Work and Background

Work related to our research can be broadly categorized into research that
examined developers’ work and productivity, what productive work habits are,
and how to foster these with goal-setting and self-reflection. To avoid repetitions
in this thesis, we present and summarize the related work in Section 1.6 of the
synopsis.

7.3 Study Design

To answer our research questions, we conducted an in situ study at 10 software
development companies of varying size. We collected data from 52 professional
software developers using a structured reflective goal-setting process, a self-
experimentation framework that we developed based on previous work in other
research areas.

Reflective Goal-Setting Our reflective goal-setting study is based on successful
self-reflection and goal-setting approaches from other areas of life, in particular the
health domain where self-experimentation is researched much more extensively.
The core of our study are the daily self-reflection questionnaires (Table 7.1),
a morning questionnaire participants were asked to answer before they start
their work, and an afternoon questionnaire they answer at the end of their
workday. The self-reflection questionnaires are based on the same stages of
reflective goal-setting as identified by Travers et al. [2015] and summarized in
Table 7.2.

214
Chapter 7. Enabling Good Work Habits in Software Developers

through Reflective Goal-Setting

Table 7.1: Daily Self-Reflection Questions.
MORNING QUESTIONNAIRE
Please answer the following question after planning your workday and before starting
with your work
Q1: What do you plan to achieve today? This could include tasks and other things
you want to make progress on at work. [5 empty textboxes]
Previously, you’ve described the following goal to improve/maintain good habits at
work: [copy previous goal here]
AFTERNOON QUESTIONNAIRE
Q1: Please rate whether you achieved what you set out to do this morning for your
following items [show planned items from morning questionnaire, options: didn’t work
on it, made progress on it, completed it]
Q2: What was the best work-related thing that happened to you today at work?
Q3: Was there anything else that you achieved but didn’t plan for in the morning?
Q4: Was there something that made it difficult to achieve what you planned to do?
Previously, you’ve described the following goal to improve or maintain good work
habits: [copy previous goal here]
Q5: Did you actively try to achieve the goal? [options: yes, no]
Q6: [show if ’yes’ in Q5] How did you carry out your strategy? Did it positively
influence your workday?; [show if ’no’ in Q5] Why not?
Q7: Is there a goal that you would like to set for yourself that could help you to
improve or maintain good work habits? You can revise your existing goal, set a new
goal, or keep the same goal (copied here for convenience). Try to follow the SMART
goals principle, i.e. think about a goal that is specific, realistic to achieve and matters
to you. It might be helpful if you also think about when you want to achieve that goal
(time-bound) and how you could measure your progress towards it. [copy previous
goal into textbox if available]
Q8: What’s the first step you will take towards reaching this goal?
Q9: Did any other goals come to mind today that you would like to mention?
Q10: How did you approach assessing your achievements and the progress you’ve made
today?
Instructions are in brackets. Where not explicitly stated, participants’ response was
collected with a textbox.

Table 7.2: Stages of Reflective Goal-Setting [Travers et al., 2015].
Stage 1 increase self-awareness
Stage 2 selecting suitable growth goals
Stage 3 visualizing future growth goal behavior and techniques
Stage 4 identifying tools and techniques to apply goal
Stage 5 putting growth goals into practice with ongoing reflection

7.3 Study Design 215

The morning questionnaire asked participants to state the five most im-
portant things they want to achieve that day (stages 1 and 5 in Table 7.2). Since
work by Altmann and Trafton [2002] showed that prospective goal-encoding,
i.e., the “action of looking ahead mentally to determine how to proceed” is
valuable for successfully achieving goals, the morning questionnaire also showed
the previously set goal to remind participants to pursue it on the workday ahead.

The afternoon questionnaire consisted of three parts: 1) Where am I?
(stage 1 in Table 7.2), 2) Where do I want do go? (stage 2), 3) How do I get
there? (stages 3 and 4). Previous work substantially influenced how we prompted
participants to reflect on work, and define goals and actionable strategies. For
example, work by Brockbank and McGill [2007] has shown that reflection provides
a valuable feedback mechanism that supports people to monitor and measure
their progress towards a goal. Hence, the first part included a reflection step
where participants rated their progress on the five items they stated they want
to achieve in the morning questionnaire. In addition, participants reflected on
aspects that were positive or made it difficult to make progress, and any other
unplanned items they made progress on. In case they had defined a goal and
strategy on the previous workday, the questionnaire prompted participants to
reflect on their achievement of the goal and whether the strategy worked. As
previous work has shown that writing down goals and committing on a single goal
only enhances goal achievement [Matthews, 2007; Wiseman, 2007], the second
part of the questionnaire prompted participants to commit to and write down a
goal for their next workday, using the SMART goals approach [Doran, 1981] that
was shown to result in more specific and more concrete goals [Lee et al., 2014,
2015]. Since goals are rarely perfect from the beginning and they can change over
time, participants could alternatively also revise an existing goal. [Locke and
Latham, 1990]. In the third part, we asked participants to describe a concrete
first step they plan to take towards reaching the goal, as this was previously
shown to increase the likelihood of actually changing one’s behavior towards
a goal [Allen, 2015; Clear, 2018; Prochaska and Velicer, 1997]. Note that we
did not provide participants with any examples of goals or strategies, to avoid
biasing them. Every third day, participants were asked how they assessed the

216
Chapter 7. Enabling Good Work Habits in Software Developers

through Reflective Goal-Setting

progress they made towards their achievements.

Study Setup Before the study, we emailed participants a document explaining
the study objectives and procedure, explained the SMART goals approach, asked
them to sign a consent form as well as to answer a pre-study survey with questions
on demographics, their existing goal-setting and -measuring practice and how
they plan their work. Participants were then asked to pursue their work as
usual for the duration of the study, while answering the morning and afternoon
questionnaires timely. We sent two email reminders per workday, one at 8am
for the morning questionnaire, and the other one at 4pm for the afternoon
questionnaire. We asked participants to answer the daily questionnaires for two
to three weeks, to avoid boredom or fatigue and ensure high quality responses.
We also logged the time it took participants to answer each daily questionnaire.
At the end of the study, participants were asked to answer the final survey, in
which we asked participants to rate their agreement with statements, or open
questions on their awareness, goal-setting, goal-measuring, and behavior change
before and during the study. The final survey also asked participants about the
value and impact of reflective goal-setting, if they could imagine integrating it
into their work routine, and how it could be best assisted with tool support.
After completing the final survey, participants received a 50 USD Amazon gift
certificate as a compensation for their efforts.

Study Test-Run To test-run and gather qualitative feedback in advance, we
ran a pilot study with three computer science graduate students. The feedback
helped us to fine-tune the survey questions and formulations. For example,
participants in the pilot study suggested to show the previous workday’s goal
again in the morning questionnaire, and to introduce the SMART goals approach
prior to the daily questionnaires.

Participants We recruited 59 participants through professional and personal
contacts from 10 companies, ranging from startups to large multi-national corpo-
rations in the software industry. Developers were invited to join the study either

7.3 Study Design 217

after giving research talks at the respective companies or by spreading the study
description via our network on social media. Participants could freely decide to
participate and were not enforced by their employers. We discarded data from 7
participants that answered the daily self-reflection surveys for less than one week,
or if the time spent on the daily questionnaires was regularly shorter than one
minute each–too short for being a meaningful reflection. Of the remaining 52
participants, 7 were female and 45 were male. Our participants had an average of
8.2 (±6.7, ranging from 1 to 24) years of professional development experience, and
were working in different roles: 45 identified themselves as individual contributors
and 7 as developers in a leading position (i.e., development lead or manager).
Participants resided in the US, Canada, Brazil or Switzerland.
Data Analysis In total, we collected 605 self-reflections (i.e., afternoon ques-
tionnaires) from 52 participants. On average, they completed 11.6 (± 2.7)
self-reflections each, which equals 11.6 days of self-reflection. We qualitatively
analyzed the collected data, and identified themes by finding commonalities and
key concepts from performing a Thematic Analysis [Braun and Clarke, 2006]. To
analyze the responses, we first open coded participants’ self-reported goals, using
a quote-by-quote strategy where multiple codes could be assigned to each quote.
Responses that could not distinctively be mapped to a code where discussed
with the other authors. To identify high-level goal categories, we discussed
the resulting codes and their relationships in multiple team discussions as well
as one card sort session. During the whole process, we heavily relied on the
quotes and consulted them regularly for additional context and details about the
identified relationships. The whole process was iterative, meaning that whenever
the discussions resulted in updates to the open coding categories, we did another
iteration.

218
Chapter 7. Enabling Good Work Habits in Software Developers

through Reflective Goal-Setting

7.4 Developers’ Work Habit Goals and Strategies
(RQ1, RQ2)

An overview of the work habit goals and strategies that developers set for
themselves is presented in Table 7.3. Overall, the identified goals can broadly
be grouped into five categories: (G1) improve time management, (G2) avoid
(self-induced/external) deviation from planned work, (G3) improve impact on
the team, (G4) maintain work-life balance, and (G5) learn continuously. The
majority of developers’ goals describe continuous behaviors and desirable
habits they want to develop, rather than momentary goals that have a defined
outcome or result. While many of these goals could apply to any knowledge
worker, several goals are very specific to software development (marked with
[SE] in the table). The goal categories are not necessarily disjunct categories: For
example, improving time management (G1) can impact what developers consider
to be a deviation from planned work (G2). The reflective goal-setting study
allowed participants to not only identify work habit goals, but also experiment
with different strategies to reach them. In the evening questionnaires, participants
also reflected on whether the strategy that they set on their previous workday
worked. After coding developers’ goals, we analyzed developers strategies and
summarized the successful ones in Table 7.3. Most strategies describe concrete
and actionable habits and routines that participants usually wanted to perform
on a daily basis or on multiple occasions each day.

In the following, we discuss each of the five goal categories and participants’
strategies to reach them, using participants’ examples and quotes. The numbers
in parentheses are counts for the number of developers that set one or multiple
goals of each category. Since the identified goals are based on what participants
identified themselves, the reported numbers should only serve to give a feeling
about how prevalent each goal is, as actual numbers might be higher. Goal
categories are enumerated with G, strategies with S, and participants with P.

7.4 Developers’ Work Habit Goals and Strategies (RQ1, RQ2) 219

7.4.1 Improve time management (G1)
Plan workdays in advance (36) A goal that the majority of the participants
set is to improve their time management by planning their workday in advance,
either on a daily or weekly basis:

“I should make a TODO list for today, not a general TODO list for ’at some
point’.” - P33

Most strategies to reach this goal include common planning methodologies,
such as maintaining a personal task list (S1), reserving time to work on important
tasks in the calendar (S2), and planning buffers (S3) for unplanned tasks or
issues. To actually apply these strategies, and not forget performing them after
just a few days, participants tried to develop a daily routine (S4) of planning
their next workday the evening or morning before work, or by setting an alarm
or reminder (S5):

“I scheduled an event in my calendar to remind myself to complete a code review.
I prioritized this over other work. It was also easier to start on this since it is
schedule right after my team’s daily stand up meeting which means I am not in the
middle of a task.” - P4

“When I think a task takes 2 days to finish, add another day for unforeseen issues
unless I am certain.” - P36

Make progress on most important tasks first (33) Developers also want to
continuously make progress on their most important tasks. To that purpose,
they applied strategies such as constantly reviewing their priorities (S7), and
regularly reflecting on the progress (S8) made on their tasks:

“It occurs to me that I need to quick-scan my inbox, and look at my calendar, before
planning the day. It will be important that I _scan_ the inbox, and not respond to
anything. If I do that, I’ll get stuck into answering mails, and not plan.” - P33

“At the end of the day or beginning of [the] next day, [I want to] reflect why not all
goals could be fully completed, and if so, why and what could be improved.” - P12

These two strategies helped participants to stay aware of their most urgent
and most important tasks, which allowed them to plan for an efficient workday
and work more systematically.

220
Chapter 7. Enabling Good Work Habits in Software Developers

through Reflective Goal-Setting

Make better use of work item tracking tools (6) For their development
work, participants further mentioned they want to better and more actively use
their work item (WI) tracking tools, by updating their progress (S8), documenting
new findings from investigations in the code (S10), and by defining subtasks for
each work item (S6):

“Every morning, breakdown user stories into at least 2 sub-tasks before starting or
continuing work on it. If it is an existing story, update the tasks based on any new
findings/discussions.” - P4

7.4.2 Avoid (self-induced/external) deviation from planned
work (G2)

Developers are also interested in forming habits that make it easier to follow
through with their planned workday (G1) and react better in case things deviate
from the plan.

Better handle urgent/unplanned issues/bugs (29) Developers want to im-
prove how they handle unplanned, urgent issues and bugs, such as a production
issue or a build break, which can occur frequently in software development.
Rather than always starting to work on the unplanned issue immediately, they
first want to review their priorities (S7) before consciously deciding how to act:

“Before doing anything, I ask myself ’How does this immediately contribute to what
I need to deliver this month?’ and ’Can this be delayed or even avoided?’.” - P19

Deferring unplanned tasks or bugs can effectively help developers to better
balance and make progress on their planned development tasks, instead of being
constantly sidetracked. Other strategies are to plan buffers (S3) and to set
concrete upper limits (S11) for working on unplanned issues:

“Spend less than 1 hour a day in activities that are not part of the day’s [plan]” -
P25
In case participants decided to stop working on the current task and start

working on the unplanned issue, many wanted to update their workday plan (S9)
to reschedule their planned tasks.

7.4 Developers’ Work Habit Goals and Strategies (RQ1, RQ2) 221

Improve focus: reduce distractions and interruptions (33) Similar to other
knowledge work domains, developers aim to limit their exposure to aspects that
reduce their focus, to be able to concentrate for longer chunks of time on planned
work. Specifically, developers’ goals primarily aim to reduce the amount of
external interruptions from co-workers and self-distractions:

“Reduce the time spent on checking mails and [IM] channels and restrict it to
specific hours like once in morning and at end of the day.” - P41

Strategies to reduce external interruptions vary, ranging from changing how
developers organize their work (e.g., timeboxing work (S12)) to where they work
(changing the location (S16)):

“Scheduled daily time block from 8AM to 10AM in my calendar: Stayed at home.
Stayed offline until 10AM (not completely offline, but never checked E-Mail or
Slack etc. before my time block was over.)” - P8

“Reduce meeting time or club meetings back to back to have bigger focus time blocks
on my calendar.” - P41

Developers further customized their communication tools, either by disabling
notifications (S13) at certain times, or by reducing the number of communication
channels (S14)).

“I have [...] notifications turned off completely in Outlook and Slack. I don’t run
anything such as Facebook or YouTube in the background or on a second screen.” -
P6
Reducing self-distractions requires a lot of self-control. To reduce the tempta-

tion to regularly check social media or news websites, few participants installed
browser extensions to block work unrelated websites (S17). Preparing their en-
vironment for focused work (S18), such as hiding the smartphone or filling the
water bottle, further allowed participants to work focused for longer blocks, but
also reduce multi-tasking, which was previously shown as a source of stress and
quality issues [González and Mark, 2004; Mark et al., 2008b].

222
Chapter 7. Enabling Good Work Habits in Software Developers

through Reflective Goal-Setting

Balance coding time (10) Another reason why developers want to avoid
deviations form work is to ensure they can spend enough time with coding, by
balancing activities and setting limits (S11) or by blocking a specific amount of
time for coding in the calendar (S2). For example, some aim to spend a minimum
amount of time on coding each day, want to reduce time spent with bug triaging,
or want to better balance the time spent working on new features versus fixing
bugs:

“Allocate a reasonable amount of the day for bug triaging of test runs (∼2 hours
max).” - P14

The importance of finding a good balance between coding and other work
was recently shown to increase developers’ job satisfaction [Meyer et al., 2019].

7.4.3 Improve impact on the team (G3)

Besides making progress on their own tasks, developers are also interested in
improving their team impact and collaboration.

Be a better colleague (12) Participants also wanted to become a better
colleague. However, both, the goals and strategies were often not concrete, and
participants had troubles to reach them. For example, participants mentioned
that they wanted to become a better pair programmer, or better understand
their influence within the team, without being able to clarify what this goal
meant or how they could reach it. Two strategies that developers successfully
applied to become a better colleague were to delegate important tasks to their
co-workers (S21) instead of always keeping them for themselves, and to actively
share their knowledge and learnings (S22) with co-workers:

“Stop writing code trying to prove to the others that I can do complex stuff.” - P37

Help co-workers at specific times (5) Even though developers want to reduce
external interruptions to have longer times of focus, they also want to support
and help their co-workers with questions or in case they are blocked on a task. To
reduce the exposure they have to external interruptions, they ask co-workers to

7.4 Developers’ Work Habit Goals and Strategies (RQ1, RQ2) 223

adapt (S15), e.g., by asking them to schedule time for questions in the calendar
in advance, or by changing their location (S16), e.g., by moving to a quiet place
in the office or working from home:

“Get people to book time with me when they need my help instead of helping them
immediately.” - P1

Do more code reviews (9) More specific to software development, developers
aim to perform code reviews more frequently, to provide continuous feedback to
their team and to help increasing the software quality. To achieve these goals,
they want to develop daily or weekly routines (S4) or set reminders (S5):

“Complete one code review every day before lunch.” - P4

Keep documentation updated (8) Developers also set goals to become more
diligent at writing documentation and keeping it updated. With this goal, they
not only aim to make their own work easier and more efficient, by remembering
previous changes and decisions, but also to better support their co-workers. To
achieve their goal, participants either wanted to document consistently (S10), e.g.,
immediately after an important change to the code base or infrastructure, or to
develop a routine (S4) of documenting when they had time to spare. This goal is
not specific to development documentation only, but also includes logging progress
on tasks, reporting bugs they identify in the coding process, or improvements
they make to the development process (e.g., release process).

Work more independently (7) Developers also want to work more indepen-
dently, to not have to interrupt their co-workers all the time to ask for guidance
or help. Participants who set this goal were often junior developers who tried
to approach problems more systematically to reach their goal. However, when
they reflected about whether the strategy helped, most reported that it was not
actionable enough. Few participants reported that they then seeked out to ask
co-workers for mentorship on how they could become more independent, who
suggested to document the thought process (S10) during the investigation of the
problem, which participants tried and reported that it helped them.

224
Chapter 7. Enabling Good Work Habits in Software Developers

through Reflective Goal-Setting

7.4.4 Maintain work-life balance (G4)

Developers further set goals to maintain a good work-life balance.

At work: stay motivated and fresh (11) At work, developers want to have
more regular and productive work hours to stay motivated and fresh. To achieve
their goal, they regularly take short social breaks (S23) and use these breaks to
have meaningful conversations with co-workers or learn from them. Participants
emphasized these breaks must be short, since they otherwise eat into their work
or spare time. Participants further optimized their work by reducing their work
hours (S24), e.g., leaving earlier and accepting there will always be work left
to do, and by working more regular hours (S25) and avoiding night shifts or
weekend work.

Outside of work: better detach from work (7) Outside of work, developers
want to be able to enjoy their spare time more and regenerate for work, by better
detaching from work and not thinking about it all the time. We summarized their
strategies to achieve the goal as pursuing a more sustainable lifestyle (S26). They
include exercising more, sleeping longer and better, eating healthier, meditating
and journaling:

“Don’t think about work outside of work. Try to be satisfied with the daily work
and come back fully rested.” - P11

Three participants also wanted to compare the data they collected on their
workplace detachment (e.g., sleep or exercise data) with their perceptions
of productivity or efficiency to spot patterns and gain ideas for further self-
improvements, but they had difficulties to follow-through and, hence, asked for
tool support.

7.4 Developers’ Work Habit Goals and Strategies (RQ1, RQ2) 225

7.4.5 Learn (G5)

Learn/improve specific development technology/transferable skill (16) De-
velopers also set learning goals, either for learning the basics of a specific tech-
nology, such as a framework or programming language, or of a transferable
development skill, such as architectural design, design patterns or how to trou-
bleshoot issues. In contrast to the other goal categories (G1-G4), learning goals
do not describe a continuous behavior developers want to develop, but a specific
goal to reach within a concrete timeframe, which is to better understand or
improve their knowledge on a topic:

“I want to know the basics of redux-saga within 7 days.” - P11

To achieve their goal, participants’ strategies included developing a learning
routine (S4) of always seizing opportunities to learn when they had a bit of
time, or reserving re-occurring time blocks for learning in the calendar (S2) .
Developers also wanted to better understand the product they were part of and
its long-term vision, and attempted to reach the goal by asking more senior
co-workers for help (S27), and by asking more specific questions (S28).

Improve myself (7) Besides learning more about development topics, develop-
ers want to continuously improve themselves, for example by learning to work
and communicate more efficiently. To achieve their goal, many participants
developed a habit of regularly reflecting about their goals (S8), to consider the
progress they made towards them, and then decide to take specific actions for
self-improvements:

“Go over todo list in the evening commute to check which todos were completed. If
not, think about why they are not yet done, write down the reason once a week, go
over all the reasons to check for patterns.” - P12

226
Chapter7.

Enabling
Good

W
ork

H
abits

in
Software

D
evelopers

through
Reflective

Goal-Setting
Table 7.3: Developers’ Work Habit Goals and Strategies.

Goal Strategies Goal-Achievement Monitoring

Improve time management (G1)

Plan workdays in advance (36) Maintain personal task list (S1), block time for tasks in calendar (S2), plan
buffers (S3), develop a routine (S4), set reminders (S5), create subtasks (S6) updates to task list and calendar

Make progress on most important
tasks first (33)

Review priorities (S7), reflect on progress towards goals/tasks (S8), update
plan (S9)

prioritized task list; monitor task switch
behavior; self-reflection

Make better use of work item track-
ing tools (6) [SE]

Reflect on progress towards goals/tasks (S8), document findings & learnings
(S10), create subtasks (S6) updates to WI tracker

Avoid (self-induced/external) deviation from planned work (G2)
Better handle urgent/unplanned is-
sues/bugs (29) [SE] Review priorities (S7), plan buffers (S3), set limits (S11), update plan (S9) prioritized task list; calendar; monitor task

switch behavior

Improve focus: reduce distractions
and interruptions (33)

Timebox/group work (S12), disable notifications (S13), reduce communication
channels (S14), ask co-workers to adapt (S15), change location (S16), block
apps/websites (S17), prepare environment for focus (S18), focus on single task
(S19), complete tasks (S20)

monitor activity and task switch behavior,
notifications (computer & phone), and lo-
cation; self-reflection

Balance coding time (10) [SE] Set limits (S11), block time for tasks in calendar (S2) monitor coding time
Improve impact on the team (G3)

Be a better colleague (12) Delegate important tasks (S21), share knowledge/findings (S22) monitor tasks assigned to others in WI
tracker

Help co-workers at specific times
(5) Ask co-workers to adapt (S15), change location (S16) reduced task switching

Do more code reviews (9) [SE] Develop a routine (S4), set reminders (S5) number of code reviews
Keep documentation updated (8)
[SE] Document findings & learnings (S10), develop a routine (S4) regular updates to documentation

Work more independently (7) Document findings & learnings (S10)
Maintain work-life balance (G4)
At work: stay motivated and fresh
(11)

Take short social breaks (S23), reduce work hours (S24), work more regular
hours (S25) monitor breaks and work hours

Outside of work: better detach
from work (7) Pursue sustainable lifestyle (S26) self-reflection; monitor activities outside of

work
Learn (G5)
Learn/improve specific develop-
ment technology/transferable skill
(16) [SE]

Develop a routine (S4), block time for tasks in calendar (S2), ask co-workers
for help (S27), ask specific questions (S28) monitor workflow improvements

Improve myself (7) Reflect on progress towards goals/tasks (S8) self-reflection
The numbers in parentheses are counts for developers that set one or multiple goals for the goal category. Goals marked with [SE] are specific to software
engineering.

7.5 Potential Impact of Reflective Goal-Setting (RQ3) 227

7.5 Potential Impact of Reflective Goal-Setting (RQ3)

To learn more about the potential impact of reflective goal-setting on developers’
goals and strategies and answer RQ3, we compared participants’ responses
describing their goal-setting practice prior to the study with their feedback after
our study.

7.5.1 Self-Reflections can Help to Identify Concrete Goals
and Actionable Strategies

In our review of related work, we learned that while developers are interested
in setting goals to maintain good work habits, it can be challenging to do so.
Hence, we developed a reflective goal-setting study that allowed participants to
self-reflect on work purposefully, and thereby encourages Hawthorne-type effects,
by encouraging participants to alter their behavior based on the insights they
gained from participating in the study. The result of participants self-reflecting
and reviewing their work on a daily basis was that they started to validate their
own experiences at work, and experiment with ideas for self-improvements. 84.5%
of the 52 participants reported that reflecting on the progress they had made
towards planned achievements and positive or negative aspects of the workday,
raised their awareness about their existing work habits and progress at work (see
Figure 7.1 for details):

“The daily self-reflection process was very interesting and the most informative for
me since it gave immediate feedback about how I did during the day.” - P6

“I found the [achievement] setting and subsequent checking of progress very valuable.
Especially the parts where I planned to do X, Y and Z and ended up not doing any
of them.” - P33

After a few days of getting used to reflecting about work on a daily basis, par-
ticipants started to identify concrete goals, which 80.8% of the 52 participants
attributed to the constant self-reflections (Figure 7.1):

228
Chapter 7. Enabling Good Work Habits in Software Developers

through Reflective Goal-Setting

Figure 7.1: Participants’ Self-Reports on the Value and Impact of Self-Reflection

“It was a wonderful exercise. It was not at all painful to start tracking (which I
initially thought it would). Also, without self-reflection, I was not really seeing
where I was spending much of my time and in-turn not able to correct/fix the
challenges.” - P48

“[The] study itself was almost a tool!” - P45

On subsequent days, the self-reflections allowed participants to refine these
goals or identify other opportunities for self-improvement that they transformed
into new goals. These goals and the daily self-reflections allowed 83.3% of the 52
participants to experiment with and develop actionable strategies to reach
their goals (Figure 7.1).

The study fostered participants to engage in deep reflection and self-awareness
activities to better understand what hindered their ability to work productively
and make progress, and also led to the identification of a wide variety of concrete
work habit goals and actionable strategies. Overall, 30.7% (16 of the 52 partici-
pants) reported having identified new goals, 53.8% (28 participants) improved
and refined existing goals, and only 15.5% (8 participants) reported that they
did not identify any new goals, since they already had an elaborate goal-setting
system in place (5 participants), or were happy with their current work habits (3
participants). We thus conclude that continuous reflective goal-setting can
be an important step towards improving and maintaining good work
habits.

7.5 Potential Impact of Reflective Goal-Setting (RQ3) 229

7.5.2 Self-Reflection can Increase Awareness on Goal Achieve-
ment and Productive Habits

Besides facilitating goal and strategy identification, participants reported that
reflective goal-setting increased their awareness on goal-achievement and pro-
ductive work habits. The daily self-reflections allowed participants to evaluate
the progress they made towards their goals and refine them when necessary,
effectively providing a feedback mechanism on goal-achievement which previously
was shown to be an important aspect of lasting behavior change [Humphrey, 1996;
Kersten-van Dijk et al., 2017; Sharot et al., 2011]. Besides, the self-reflections
increased participants’ awareness about productive work habits, such as the
importance of planning, of reducing interruptions and multi-tasking, and of
clarifying problems before starting to work on them:

“I had long ago forgotten the utility of a short-term TODO list - something focused
on just the next 24 hours. By starting to use a daily list, I could get a tight feedback
loop between my plans and my actual outcomes.” - P33

“I can now make this conscious decision: When someone is coming by I can decide
’yes I have time’ or ’no I am going to focus right now’. Whereas before, I was like
’okay, I am here, let’s just talk to them’.” - P3

As a result, many participants stated that the motivation to finish the study
was rarely about actually reaching their goals, but about the progress they
made towards them and the productive habit changes and learnings goals
entail:

“Defining goals does not have to be to achieve something. Making progress is a
good goal as well.” - P16

7.5.3 Reflective Goal-Setting can Increase Productivity and
Well-Being

40 of the 50 participants (80.0%) who answered the question, agreed that the
continuous self-reflections and goal-setting led to positive behavior change (Fig-
ure 7.1). We refrain from repeating the self-reported behavior changes here,

230
Chapter 7. Enabling Good Work Habits in Software Developers

through Reflective Goal-Setting

since they are congruent with the identified goals and strategies presented above.
12.0% (6 of the 50) who stated that they did not change their behavior, explained
that they either already had good habits in place (3 participants), had difficulties
with breaking bad habits (2 participants), or were not able to identify good
enough opportunities for self-improvements (1 participant).

37 of the 40 participants (92.5%) who self-reported that they changed their
behavior stated that they plan to keep their new behavior, mostly because they
were satisfied with their increased progress and (perceived) productivity.
Higher well-being was another benefit of the self-reflections, since they allowed
participants to better detach from work (similar to [Williams et al., 2018]):

“It was a very good opportunity to understand more about myself. When I used to
write it everyday, I realised that I am dissatisfied with myself even though I work to
the best of my ability most of the time. And instead of getting dissatisfied, I should
think of what I can do better the next day, and enjoy the rest of my evening with
peace. Also, I learnt to think about my work in a more organised way. That will
really help me in improving my day to day productivity and hence my happiness.” -
P32

Note that the duration of our study does not allow to demonstrate any
long-term behavior changes, but it shows the efficacy of our reflective goal-setting
approach to identify concrete and actionable behavior change plans, which should
be what is evaluated in early stage personal informatics systems according
to Klasnja et al. [2011].

7.5.4 Help Developers to Help Themselves

While our reflective goal-setting study was initially met with quite a bit of
skepticism, since we “forced” (P8) participants to “write a diary” about their
work, many reported that after a few days of getting used to and practicing
self-reflecting, it became easier to self-reflect on their work and progress, which
led to many surprising insights into their own work habits, and the identification of
meaningful goals and strategies. Surprisingly, the approach was also valuable for
participants who declared that they previously engaged in regular self-reflection
and/or goal setting (Figure 7.1): Of the 63.5% (33 out of 52) who reported they

7.5 Potential Impact of Reflective Goal-Setting (RQ3) 231

previously set goals for themselves, 84.8% (28 out of 33) identified new or revised
existing goals; and of the 40.4% (21 out of 52) who regularly self-reflected prior
to the study, 66.7% (14 out of 21) identified new or revised existing goals in a
meaningful way. In the final survey, the majority of participants stated that they
want to continue doing self-reflections voluntarily after the study; 40.4%
daily (21 out of 52), 11.5% every two to three days (6 out of 52), and 44.2%
weekly (23 out of 52). Several participants stated that they enjoyed participating
in the study:

“Thank you for enforcing me to reflect daily.” - P8

Only 4 out of 52 participants (7.7%) reported that they were happy the
study was over and they would not want to continue doing self-reflections, either
because the self-reflection caused anxiety (1 participant) or they were burdensome
and tedious (3 participants), especially when performed daily:

“It was tedious. I would not like to do it everyday. I feel like the to do list and
how much did you finish each of them is enough, tracking the tasks that are still
incomplete.” - P34

We conclude that in most cases, encouraging participants to self-reflect
regularly can lead them to recognize its value, and the desire to develop a
self-reflection routine to foster productive self-improvements.

232
Chapter 7. Enabling Good Work Habits in Software Developers

through Reflective Goal-Setting

7.6 Summary of Results

Our analysis provides insights into developers’ goals to improve and maintain
good work habits, and the value and impact of reflective goal-setting in the
workplace. Table 7.4 summarizes our key findings.

Table 7.4: Summary of the Study Key Findings.
Finding Section

F1

Developers’ work habit goals can be categorized into
improving time management, avoiding deviations from
planned work, improving impact on the team, maintaining
work-life balance and continuous learning.

7.4

F2

Most work habit goals describe continuous behaviors they
want to develop, rather than momentary goals with a defined
outcome or result.

7.4

F3

Continuous self-reflection can be an important step towards
productive self-improvements at work, by supporting the
identification and monitoring of work habit goals and
strategies.

7.5.1,
7.5.2

F4
Reflective goal-setting can increase productivity and
well-being at work. 7.5.3

F5

After developers are encouraged to self-reflect daily for a
while, many recognize the value of self-reflection and want to
develop a self-reflection routine.

7.5.4

7.7 Discussion

Our work provides insights into developers’ work habits they consider desirable
to pursue and set as goals for self-improvements. The majority of developers’
goals describe continuous work habits, rather than momentary goals that have
a clear outcome or result, suggesting that developers’ motivation is less about
actually reaching their goals, but about the progress they make towards them
and the productive habit changes they entail. Recent work by Clear [2018]

7.7 Discussion 233

supports this finding, stating that people should focus on changing their habits,
rather than working towards a goal, which upon completion becomes irrelevant
and causes many to relapse to old or previous habits.

While developers generally had individual differences in their goals and strate-
gies to improve their work, we observed that the overarching objective was to
gain back control of their work to make more progress on their tasks.
Extensive studies performed by Amabile and Kramer [2011] support the observa-
tion and showed that the single best motivator at work is to empower knowledge
workers to make progress, which also increases their happiness. Similarly, recent
work suggested that many developers want to gain back control over how
they spend their time at work, since work is often very randomized and frag-
mented by interruptions and meetings [Mark et al., 2018; Meyer et al., 2019]. The
remainder of this section discusses how self-reflection and various tool support
might help developers retain control over their work, make more progress and
increase productivity.

Self-Reflection as the Missing Key to Productivity? Our study showed that
reflective goal-setting provides developers with a framework for identifying goals
and strategies that are relevant to their work, and motivates productive behavior
changes. These findings are congruent with previous work that demonstrated the
value of self-reflection for identifying and reaching goals in several areas of life,
especially health, sleep and physical activity (e.g., [Gasser et al., 2006; Kocielnik
et al., 2018; Lee et al., 2017; Williams et al., 2018]).

While it is common for developers to review code, progress (e.g., in scrum
meetings) and performance (e.g., reviews with managers), we are curious to learn
in the future why they rarely reflect on work habits in practice, given the great
promise. One reason could be time pressure, which makes it difficult to step
away from work and take the time to reflect [Di Stefano et al., 2016]. Previous
work has also suggested that self-reflection does not feel natural to some, which
is why they need to be encouraged to try it and learn about the benefits from
self-reflecting regularly themselves, similar to our own observations [Gustafson
and Bennett Jr, 2002; Moon, 2013]. As noted above, many developers were

234
Chapter 7. Enabling Good Work Habits in Software Developers

through Reflective Goal-Setting

initially skeptical to participate in a self-reflection study, but encouraging them
to try it out for a few weeks let them realize the value and leads to the desire
of self-reflecting also outside of the study context. While we did not investigate
the reasons for their initial skepticism, future work could study barriers towards
initiating and maintaining continuous self-reflection, to better understand how we
can encourage and convince developers. Our study did not look into long-term
engagement with reflective goal-setting, but we assume that reflecting daily
might be perceived as too cumbersome or time-consuming after a while. Varying
with the intervals and frequency at which developers self-reflect might be one
way to find a trade-off between the cost and value of self-reflection and
motivate long-term engagement. For example, developers could initially reflect
on a daily basis for a few weeks, to practice self-reflection and learn about the
value, and then develop a habit of reflecting once or twice a week, or even only
a few times a month. Participants further suggested various opportunities to
reduce the cost of self-reflecting by better incorporating it into their daily work
lives. These suggestions that participants brought up in the final survey are
discussed in relation to previous work in the area of personal self-improvement
and productivity in the remainder of this section.

Supporting Goal-Identification. To support goal-identification, participants
suggested that self-reflection should be integrated into existing systems and
workflows. Instead of creating another separate tool, recent work has explored
how to integrate self-reflection into existing communication tools, such as Slack
or Skype by building conversational bots [Kocielnik et al., 2018; Williams et al.,
2018]. Furthermore, our participants and previous work [Baumer et al., 2014;
Krogstie et al., 2012] emphasized that supporting self-reflection with computer-
ized systems is crucial. For example, through automated monitoring, which can
provide personalized insights and statistics into developers’ work, and ease the
recollection part of the reflection and foster goal-identification. Existing auto-
mated monitoring systems successfully increased knowledge workers’ awareness
about specific aspects of work, but the provided insights were often not actionable
enough for users to know how and what to change, which is why the engagement

7.7 Discussion 235

with these tools usually decreased after a few days [Collins et al., 2014; Kim et al.,
2016; Li et al., 2010; Meyer et al., 2017b]. According to Baumer et al. [2014], the
problem of most automated monitoring research is the implicit assumption that
just by providing access to “prepared, combined, and transformed” data, in-depth
reflection can and will occur. We are, thus, interested in studying how automated
monitoring can be combined with self-reflection, to reduce the time and effort
required to participate in active, in-depth reflection, while still providing rich
and actionable insights. For example, the automated monitoring could provide
developers with some automatically generated insights and visualizations on
how they spent their time at work, and then still prompt developers to actively
self-reflect about their workday.

Since self-reflection is typically reactive [Johnson and White, 1971], partici-
pants suggested that receiving examples and recommendations for self-improvements,
that are based on their current behaviors and compared to best practices or devel-
opers with similar job profiles, could be valuable for a proactive goal-identification.
Such a recommendation system could, for example suggest good moments to take
a break when a developer is stuck on an issue [Epstein et al., 2016a]. However,
recommending relevant goals to developers is challenging, since there might be
privacy concerns from collecting the data, and since what is a good work habit
to one developer is not necessarily a good one for another. For example, one
developer might want to reduce interruptions from co-workers to have more
uninterrupted time to focus on coding tasks, while another developer finds value
and satisfaction in the resulting discussions. The advantage of self-reflections
is that they allow developers to personalize and tailor work habit goals to their
needs, with a minimum of privacy concerns. Recent work on improving sleep,
physical activity or living with diabetes has shown early promise of building
virtual “coaches” or “assistants” that provide personalized and tailored recom-
mendations, e.g., in the form of conversational bots [Daskalova et al., 2016;
Herrmanny et al., 2016; Monkaresi et al., 2013]. However, many open questions
remain as to how to best tailor these systems to users, e.g., by altering the timing
and content of their recommendations.

236
Chapter 7. Enabling Good Work Habits in Software Developers

through Reflective Goal-Setting

Monitoring Goal-Achievement. Reflective goal-setting allows developers to
gain self-generated feedback on their goal-achievement, a key pillar of successful
behavior change [Humphrey, 1996; Kersten-van Dijk et al., 2017; Sharot et al.,
2011]. To further improve the trade-off between cost and value of self-reflections,
participants suggested how the progress towards their goals could be automatically
measured, instead of having to manually self-report them each day. These
suggestions include the monitoring of switches between activities and tasks and
updates to the task list, WI tracker, calendar and documentation; they are
summarized in the last column of Table 7.3. Other goals, such as if a developer
became a better colleague, are more challenging to track automatically.

Supporting Goal-Maintenance. Finally, participants described how tools could
support the maintenance of goals once they reached them (i.e., maintaining good
habits), either passively or actively. One less intrusive way that participants
suggested is to show reminders that help to avoid forgetting to pursue their
goals. Previous work suggested that reminders need to be context sensitive to
be effective, and that nudging users into performing a behavior might be even
more successful [Fogg, 2003; Munson and Consolvo, 2012; Prestwich et al., 2009].
Similarly, other participants asked for a system that automatically interferes with
their work if needed. For example, by hiding email or instant messaging notifica-
tions at times of high focus, by blocking distracting websites, or by disallowing
participants to switch to another task when they committed to work on a specific
one. However, participants were fairly ambivalent about the value and risks of
such systems, suggesting they would require a fair amount of customization and
contextual awareness to work well. The finding is supported by recent work
by Mark et al. who found that blocking online distractions increases focus and
productivity, but at the cost of higher stress [Mark et al., 2018].

Related research in the physical activity domain has shown promise in motivat-
ing people to maintain their goals by including social challenges and competitions
(e.g., [Edelson et al., 2011; Fogg, 2003; Fritz et al., 2014; Lin et al., 2006; Rooksby
et al., 2014]). For example, Chick Clique, a system that allowed teenage girls to
share their health and phyiscal activity related data, showed that data sharing
can be a powerful motivator [Toscos et al., 2006]. However, when we asked our

7.8 Threats to Validity 237

participants about comparing themselves to or competing with co-workers, 62.7%
(32 of 51) stated clear disinterest. Reasons were either that work is too individual
to be quantified and compared or that some people would start to “game” these
metrics:

“Everyone works in different ways and such comparative measurements seem to
generally fail to capture that to any satisfactory level. Additionally any such
comparisons are likely to be gamed by the people who value them the most resulting
in workers who strive to increase their metrics rather than being effective and
creative.” - P01

According to Treude et al. [2015] and Muller [2018], users are most likely to
“game” a system to receive higher scores when the measure seems inaccurate
or unfair. Furthermore, research on including social components with physical
activity trackers to motivate self-improvements showed similar privacy concerns,
increased pressure, and reported that participants felt ”awkward“ when sharing
data with strangers [Fritz et al., 2014; Lin et al., 2006; Prasad et al., 2012;
Toscos et al., 2006]. One way to overcome these challenges could be to develop
support groups—an inner circle of people who want to encourage a person to
reach self-improvement goals—but it was shown they are challenging and time
consuming to build and maintain [Munson and Consolvo, 2012].

7.8 Threats to Validity

External Validity. Although we studied 52 software developers at 10 different
companies (startups to multi-national companies) from four countries, gen-
eralizability to other development companies, to other developers, and other
knowledge workers, might be limited. The positive effect of self-reflection on
goal-identification and -achievement might be threatened by a self-selection bias
of participants who are generally more interested in better understanding their
work and improving their practices, which is a common threat in self-improvement
research [Kersten-van Dijk et al., 2017]. After a few days of skepticism, most
participants started to appreciate the value of self-reflecting and goal-setting,
but it is unclear how well this generalizes to other developers. We tried to

238
Chapter 7. Enabling Good Work Habits in Software Developers

through Reflective Goal-Setting

mitigate the self-selection risk by being very upfront about the study objectives
and method, by stressing that the collected data is and will remain private, and
by allowing participants to continue their regular work and selecting a suitable
time for participation.

Internal Validity. While we relied on methods and findings that were success-
fully applied in previous work in other fields (see Section 7.3), the design of the
reflective goal-setting study and framing of the daily self-reflection questions
might have influenced participants. For example, since we prompted participants
to reflect on progress and achievements, the goals they identified might have been
biased more towards these. Furthermore, the prompts for daily self-reflection and
goal-setting in our study influenced participants’ behaviors (Hawthorne effect),
but this was intended to answer RQ3. While most identified goals overlapped with
several other participants, another threat to the internal validity of our results is
based on our reliance on participants’ self-reports only. For example, the strate-
gies we identified to successfully support goal-achievement rely on participants’
accurate and non-exaggerated reporting. To mitigate the risk, we first carefully
analyzed each participants’ self-reports individually, before comparing them to
their study feedback. In case their responses showed decreasing interest (e.g.,
missing multiple days of self-reports) or the time spent per self-report was very
short, we discarded their data. In addition, the positivity towards self-reflection
might be caused by novelty effects, and might wear off after participating for
multiple months. In Section 7.7, we discuss how tool support might motivate
long-term engagement and help to balance the trade-off between cost and value
of self-reflections.

Construct Validity. We performed a Thematic Analysis [Braun and Clarke,
2006] to analyze participants’ self-reports and responses to the pre-study and
final surveys. One potential threat could be that the open coding step was
performed by one author only. To reduce bias, we discussed themes and quotes
of each coded category in the team.

7.9 Conclusion 239

7.9 Conclusion
In this paper, we explored software developers’ goals and strategies to improve or
maintain good habits at work. We identified five main goal categories, and found
that developers generally want to develop good continuous behaviors, rather than
reaching momentary goals with a defined outcome and result. We show that
continuous self-reflection can increase developers’ awareness about work habits,
and that it can also lead to productive behavior changes that increase productivity
and well-being at work. Our results suggest that purposeful and active self-
reflection can provide actionable insights into potential self-improvements at
work, something which has previously been shown to be challenging with existing
self-monitoring approaches in the workplace. We discuss approaches to find a
trade-off between the cost and value of workplace self-reflection, and how tools
could potentially support goal-identification, goal-achievement monitoring, and
support the maintenance of goals and good habits.

7.10 Acknowledgements
We thank our study participants for their participation. We also thank the
anonymous reviewers and our editor for their valuable feedback.

8
Reducing Interruptions at

Work: A Large-Scale
Field Study of FlowLight

Manuela Züger, Christopher Corley, André N. Meyer, Boyang Li,
Thomas Fritz, David Shepherd, Vinay Augustine, Patrick Francis,

Nicholas Kraft, Will Snipes
Published at the 2017 CHI Conference on Human Factors in Computing Systems
Contribution: Involvement in all main parts of this large team project, including
the tool development, execution of field study, data analysis, and paper writing.

We licensed the FlowLight in 2018 to be commercially sold by Embrava 1.

1https://embrava.com/pages/flow

https://embrava.com/pages/flow

242
Chapter 8. Reducing Interruptions at Work:

A Large-Scale Field Study of FlowLight

Abstract

Due to the high number and cost of interruptions at work, several approaches have
been suggested to reduce this cost for knowledge workers. These approaches pre-
dominantly focus either on a manual and physical indicator, such as headphones
or a closed office door, or on the automatic measure of a worker’s interruptibility
in combination with a computer-based indicator. Little is known about the
combination of a physical indicator with an automatic interruptibility measure
and its long-term impact in the workplace. In our research, we developed the
FlowLight, that combines a physical traffic-light like LED with an automatic
interruptibility measure based on computer interaction data. In a large-scale and
long-term field study with 449 participants from 12 countries, we found, amongst
other results, that the FlowLight reduced the interruptions of participants by
46%, increased their awareness on the potential disruptiveness of interruptions
and most participants never stopped using it.

8.1 Introduction

Knowledge workers are frequently interrupted by their co-workers [Czerwinski
et al., 2004; González and Mark, 2004; Sykes, 2011]. While many of these
interruptions can be beneficial, for instance to resolve problems quickly [Isaacs
et al., 1997], they can also incur a high cost on knowledge workers, especially
if they happen at inopportune moments and cannot be postponed [Bailey and
Konstan, 2006; Borst et al., 2015; Mark et al., 2008b; McFarlane, 2002].

Due to the high cost and the high number of interruptions that knowledge
workers experience every day (e.g., [Czerwinski et al., 2004; González and Mark,
2004]), several approaches have been proposed that can roughly be categorized
by the interruptions they address: computer-based and in-person. Studies
have shown that the cost of computer-based interruptions can successfully be
mitigated by automatically detecting a knowledge worker’s interruptibility and
mediating interruptions by deferring them to more opportune moments (aka.
defer-to-breakpoint strategy) [Arroyo and Selker, 2011; Ho and Intille, 2005;

8.1 Introduction 243

Iqbal and Bailey, 2008]. Another strategy to reduce the cost of computer-based
interruptions is to indicate a person’s interruptibility to co-workers in a contact-
list style application on the computer [Begole et al., 2004; Lai et al., 2003; Tang
et al., 2001]. While these approaches have also been suggested for addressing in-
person interruptions, they did not show to have any effect on them, probably since
the contact-list style applications can easily be hidden behind other applications
and thus forgotten at communication initiation [Begole et al., 2004; Fogarty
et al., 2004; Hincapié-Ramos et al., 2011a; Lai et al., 2003].

For in-person interruptions—one of the most costly kind of interruptions due to
their high frequency and immediate nature [González and Mark, 2004; McFarlane,
2002; Sykes, 2011]—approaches predominantly rely on manual strategies to
physically indicate interruptibility, such as wearing headphones, closing the
office door, or using busy lights that have to be set manually [Blynclight, 2019;
Sykes, 2011]. Since manual approaches are cumbersome to maintain, users
generally don’t update them on a regular basis and their accuracy and benefits
are limited [Milewski and Smith, 2000]. Only very few approaches have looked
at a combination of a physical interruptibility indicator with an automatic
interruptibility measure to reduce the cost of in-person interruptions [Bjelica
et al., 2011; Hincapié-Ramos et al., 2011b] and there is no knowledge on the
long-term effects of such approaches.

In our research, we developed the FlowLight approach, an approach to
reduce the cost of in-person interruptions by combining a physical interruptibility
indicator in the form of a traffic-light like LED (light emitting diode) with an
automatic interruptibility measurement based on a user’s computer interaction.
In a large-scale and long-term field study with 449 knowledge workers from 12
countries and 15 sites of a multinational corporation, we evaluated the FlowLight
and its effects in the workplace. Over the course of the study, we collected a rich
set of quantitative and qualitative data, including self-reported interruption logs
of 36 participants, survey responses of 183 participants that used the FlowLight
for at least 4 weeks, and in-depth interviews of 23 participants. Our analysis of
the data shows, amongst other results, that the FlowLight significantly reduced
the number of interruptions of participants by 46%, while having little impact on

244
Chapter 8. Reducing Interruptions at Work:

A Large-Scale Field Study of FlowLight

important interruptions. Further, the FlowLight increased the awareness on the
cost of interruptions within the workplace, participants felt more productive using
the FlowLight and most participants continued using the light for up to 13 months
by now. Overall, the gained insights on the long-term usage of the FlowLight
provide strong support for the benefits of combining a physical interruptibility
indicator with an automatic interruptibility measure in the workplace and its
significant impact on reducing in-person interruption costs.

8.2 Related Work

Related work on managing interruptions can broadly be grouped into strategies for
reducing interruptions and disruptiveness, and ways of measuring and indicating
interruptibility. To avoid repetitions in this thesis, we present and summarize
the related work in Section 1.6 of the synopsis. Related work on measuring
interruptibility are specific to this publication and are presented below.

8.2.1 Measuring Interruptibility

Previous research has explored various features to measure a person’s interrupt-
ibility. For instance, Hudson et al. [2003] simulated sensors by coding audio and
video recordings into features related to the person’s current context, such as the
number of people present or the phone being on the hook. While their approach
showed promise in measuring interruptibility, the chosen features are difficult to
capture automatically.

To automatically detect a person’s interruptibility, Stern et al. [2011] devel-
oped an approach that is based on the person’s location and calendar informa-
tion. Fogarty et al. [2005] used speech sensors, location and calendar information
and activity on the computer to measure presence and availability; Tani and
Yamada [2013] measured interruptibility using the pressure applied on the key-
board and mouse; and Coordinate by Horvitz et al. [2002] uses user activity and
proximity of multiple devices to forecast presence and availability.

More recently researchers have also started to use biometric data to measure

8.2 Related Work 245

Figure 8.1: Evolution of the Physical Indicator of the FlowLight Over Time

(a) July 2015: Orig-
inal Prototype

(b) August 2015:
First Major Pilot
(Lights Empha-
sized with Over-
lays)

(c) October 2015:
Blink(1) Version
with Adhesive Clip

(d) April 2016: De-
ployment in Sec-
ond Pilot in India
(India #2)

interruptibility. For instance, Mathan et al. [2007] classified interruptibility
during a US military training with an electroencephalography (EEG) sensor
that captures the electrical activity of the brain. Chen et al. [2007] calculated
interruptibility based on an electromyography (EMG) sensor that captures heart
rate variability and muscle activity. In our previous work, we used various
biometric sensors (EEG, electrodermal activity (EDA), skin temperature, and
photoplethysmography (PPG)) to predict interruptibility [Züger and Fritz, 2015].
Overall, research has shown that biometric sensors can be valuable in automat-
ically measuring interruptibility, however, at this point the biometric sensors
required to accurately measure interruptibility are generally still too invasive for
long-term usage.

The FlowLight builds upon previous research in this area by automatically
measuring interruptibility based on a combination of computer activity, calendar
information and log-in state. It thereby utilizes a minimally invasive set of
features that performs well without compromising the users’ privacy or requiring
additional body-worn biometric sensors. It further extends previous research in
this area by combining the automatic measure with a physical indicator.

246
Chapter 8. Reducing Interruptions at Work:

A Large-Scale Field Study of FlowLight

Figure 8.2: FlowLight Users Over Time (Size of Orange Circles Indicates the
Number of Participants; Regular Dips in the Number of Pilot Users Represent
Weekends and the Prolonged Dip in December/January 2016 represents the
Christmas Break)

8.3 Approach and Implementation

The FlowLight consists of a computer application to automatically determine
a user’s interruptibility state and a physical LED light to indicate this state to
co-workers. The FlowLight was developed iteratively over more than a year and
improved continuously based on feedback from a small developer team that we
used for testing, and later on, also based on feedback from study participants.

Physical LED Light. FlowLight uses a physical traffic-light like LED to indicate
the interruptibility status to co-workers. This light has evolved throughout the
pilots2. The first model, which was designed and soldered in-house, is shown in
Figure 8.1a. In Figure 8.1b the same model light is shown encased in plastic and
deployed in an open office space. Finally, Figure 8.1c shows the blink(1)3 LED
light that we adopted to avoid installation issues with certain drivers immediately
after the first major pilot, which was also the first of two pilots in India (denoted
as India #1 in Figure 8.2). Typically, we mounted the LED light on a user’s
cubical wall or outside a user’s office.

The light uses different colors to indicate four states: Available as green, Busy

2We use the term pilot to refer to each individual field study trial with a separate team.
3https://blink1.thingm.com/

https://blink1.thingm.com/

8.3 Approach and Implementation 247

as red, Do Not Disturb (DnD) as pulsating red, and Away as yellow. Note that
these states and colors mimic the ones used by prominent instant messaging
services, in particular the one used by the company under study.

Application. The application features three main components: a Tracker to
capture events relevant for calculating the interruptibility state, a Status Analyzer
to analyze the captured events and calculate the user’s interruptibility state on
the fly, and a Status Manager to manage the user’s current status, propagating
it to the LED light and other applications, in particular instant messaging (IM)
clients. The application was implemented to be compatible with the Windows
operating system, Skype for Business, an IM and video-conferencing system, and
Office 365, a software suite that provides email and calendaring services, amongst
others. We chose to tailor our application to these systems and applications due
to the IT setup at the target company for our study.

The Tracker logs a user’s mouse and keyboard interaction. In particular, it
collects mouse clicks, movements as pixels moved, scrolling as pixels scrolled
and keystrokes (without recording the specific key). This component also logs
calendar events to determine meetings and the Skype status.

The Status Analyzer uses the tracked keyboard and mouse events to calculate
the user’s interruptibility status on the fly, i.e., whether the user is available, busy,
highly busy (DnD) or away. The algorithms used to calculate the interruptibility
status are described below.

The Status Manager is notified by the Status Analyzer at every change in the
user’s interruptibility, and then propagates the updated status to the physical
LED light and the user’s presence status in Skype for Business. The presence
status in Skype for Business can also be changed manually by the user, or
automatically by the Office 365 calendar, in case a meeting is scheduled. In
case the presence status is changed manually, the Status Manager updates the
interruptibility state of the application and the physical LED light.

Algorithms for Status Updates. Over the course of this study, we used three
different algorithms to determine and update the interruptibility status automat-

248
Chapter 8. Reducing Interruptions at Work:

A Large-Scale Field Study of FlowLight

ically, improving them based on critical user feedback as discussed below.

FlowTracker. This algorithm sums up the computer interaction in the past
three minutes according to heuristic weights assigned to each type of event,
which were tuned based on feedback from early alpha and beta users of the
FlowLight. If the value of the sum is in between the top 9% and the top 4%
of their activity range—we captured averages over the past days—the user is
considered busy. If it is within the top 4%, the user is considered highly busy.
In our first pilot study in Bangalore, India (India #1 in Figure 8.2), we used
different thresholds at first, namely 13% and 5% based on a prior study that
indicated that knowledge workers are not interruptible for approximately 18% of
their day. However, several technical writers (and others) involved in that pilot
gave strong feedback that the light switched to the busy state too easily, which
is why we lowered the thresholds to the mentioned 9% and 4%.

Smoothing. While the FlowTracker showed promise, many early users com-
plained that it was too sensitive to certain input. For instance, a twenty second
burst of typing may cause a user to temporarily be shown as busy. Therefore,
the Smoothing algorithm marks users as busy if they were active in each of the
last three minutes and exceeded a threshold of 100 combined mouse clicks and
key presses in the recent past (between 4 and 7 minutes ago). This algorithm
reduces frequent changes by requiring over three minutes of activity to become
busy and, once busy, by requiring only one above-threshold minute in the recent
past to remain busy. To achieve the highly busy status, users had to be busy at
the current point in time and had to be above-threshold for fifteen of the last
thirty minutes.

Smoothed FlowTracker. While the Smoothing algorithm leads to fewer status
changes, since it relied on a static threshold (i.e., 100 combined mouse clicks and
key presses), it did not adapt to individual users’ work patterns. For instance,
designers working on drawings tended to use mouse clicks almost exclusively,
which makes it difficult to exceed the threshold. Thus, we finally combined the
FlowTracker algorithm with the Smoothing algorithm to achieve the advantages
of both approaches. This algorithm, currently in use, operates as the Smoothing
algorithm, but instead of using a static threshold, it utilizes the FlowTracker

8.4 Evaluation 249

algorithm to determine above threshold values. This algorithm eliminated all of
the most common complaints reported by pilot users. Further refinement of the
algorithm is left for future work.

Although our main intent was to use an algorithm to infer interruptibility,
we offered participants a “Manual Only” mode since it was requested by some
participants, especially those with management roles that needed to be available
to others most of the time, and we noticed (and our study confirmed) that our
algorithms might not be accurate for everyone or for all activities requiring focus,
such as reading or thinking.

8.4 Evaluation

To evaluate the FlowLight, in particular the combination of the physical indicator
and the automatic interruptibility measure as well as its effect on knowledge
workers, we conducted a long-term and large-scale field study with 449 knowledge
workers. For this study, we installed the FlowLight at over 15 locations in 12
countries of one multinational corporation. Over the course of the study, we
collected a rich set of data using a combination of experience sampling, a survey,
an interview and computer interaction monitoring. Figure 8.1 illustrates a few
pictures of the FlowLight in use in different pilots. Figure 8.2 indicates the
increasing and continuous number of participants and the major pilots of this
study since its beginning and up to September 2016.

8.4.1 Study Procedure

For each team participating in our field study we conducted the same five-week
pilot procedure as illustrated in Figure 8.3. Prior to the start of a pilot, we
asked the participants to install the FlowLight application in ‘data collection
only’-mode.

InWeek #1 of the pilot, users were instructed to use the FlowLight application
to manually log the time and severity of each interruption during the five day
work week. Our application allowed participants to log interruptions by a click

250
Chapter 8. Reducing Interruptions at Work:

A Large-Scale Field Study of FlowLight

Figure 8.3: Timeline of Study Procedure

on the taskbar menu or a hotkey combination for minimal invasiveness. As soon
as an interruption had been logged, a single modal dialog appeared that asked
participants to specify the severity of the interruption on a 5-point Likert scale.

At the beginning of Week #2, the physical indicator of the FlowLight was
installed and the automatic status update feature for the interruptibility status
was activated. To minimize Hawthorne-type effects and have participants and
co-workers get used to the FlowLight, we then waited for one week before we
gave further instructions.

At the beginning of Week #3, we again asked participants to manually log
their interruptions for 5 work days. We also reminded participants about the
manual logging in Week #1 and #3 to ensure they would not forget.

During Week #4 and #5 users continued using the FlowLight. Throughout
these 5 weeks the application collected anonymized usage data. At the end of
Week #5, after participants had the FlowLight for four weeks, our application
prompted them to complete a survey. The survey took an average of 14.2 minutes
to complete and had questions on the FlowLight approach and its impact, in
particular on participants’ interest in continuing using the approach, its impact
on interruption costs, productivity and interaction behavior, on the accuracy of
the automatic state detection and manual setting, as well as on general feedback
and demographics. After completing the survey, users were asked on the last page
of the survey to upload their data collected by the FlowLight application, which
included the usage data logs and the logs of the manually captured interruptions.

For a deeper understanding of the long-term usage, experience and effect of
the FlowLight, we conducted in-depth interviews with a subset of participants
approximately two months after they installed the FlowLight. Interview par-

8.4 Evaluation 251

ticipants were selected semi-randomly, based on accessibility, availability and
willingness to participate in the interview. The interviews were on average 19.5
minutes long and the questions focused on the benefits and limitations partici-
pants observed with the FlowLight approach, as well as on how it impacted their
own behavior and interactions in the team over the course of the two months
since the installation. For instance, we asked participants whether they felt that
their colleagues respected their FlowLight or if they noticed situations in which
the status was not accurate. Note that the interview and survey questions can
be found on our supplemental materials site 4.

Independent of the timeline of the study procedure, we also started to
anonymously log the number of people running the FlowLight application each
day. For privacy reasons, we only keep track of the number of unique active
FlowLight users in the online log.

8.4.2 Participants

Since the beginning of our study 13 months ago, we installed the FlowLight
approach with a total of 449 participants from 15 sites, located in 12 different
countries, of one multinational corporation. From these 449 participants, we
were able to gather:

Survey responses from 183 participants (IDs: S1-S183), 144 male and 39
female, with an average age of 36.0 years (standard deviation, in the following
denoted with ±, of 8.7), an average professional experience of 12.0 years (± 8.0),
from a variety of work areas, including 77 participants in development, 56 in
other engineering, 24 in project management, 15 in other non-engineering, and
11 in testing, and with various job roles, including 70 individual contributors, 36
other, 32 leads, 31 managers, 8 executives, and 6 architects;
Interview transcripts (conducted by us) from 23 participants (IDs: I1-I23),
22 of which were male, 1 female, average age of 36.9 years (± 5.8), average
experience of 13.2 years (± 4.7), and with various job roles, including 9 managers,
11 software developers, 1 researcher, 1 product owner, and 1 tester;

4https://sites.google.com/site/focuslightonline

https://sites.google.com/site/focuslightonline

252
Chapter 8. Reducing Interruptions at Work:

A Large-Scale Field Study of FlowLight

Interruption logs (self-reported) from 36 participants across six different coun-
tries, 13 from Argentina, 6 from Norway, 5 from Poland, 5 from Switzerland, 5
from Sweden, and 2 from the USA;
Usage data logs from 47 participants (IDs: D1-D47) 20 from Argentina, 18
from India, 4 from Poland, and 5 from Vietnam.
Online logs from all 449 participants that installed the approach (each one
had the application running for at least one day after we integrated the logging
feature).
Note that due to privacy concerns with the collected data, we did not require
participants to identify themselves in each step and/or fill in their demographics,
except for the survey, which is why we can only report some demographics for
each round and are not able to track the participants across the different methods,
for instance the survey and the self-reported interruption logging.

8.4.3 Data Collection and Analysis

Survey and Interview. In total, we collected survey responses from 183 par-
ticipants after they had been using the FlowLight for at least four weeks, and
interview transcripts from the 23 participants after they had been using the
FlowLight for approximately two months. To analyze the textual data of the
survey and interview responses, we used techniques based on Grounded Theory,
in particular open coding and axial coding to determine higher level themes. To
establish a common set of codes and themes, two of the authors applied open
axial coding to the same subset of interview transcripts and then established
a common understanding and defined a structure for the most commonly men-
tioned concepts. As the topics of the survey and interviews overlap, we used and
extended the same coding scheme to analyze the textual survey responses. To
validate the analysis of the survey results, two additional authors extracted their
main findings from a subset of the responses independently.

Interruption Logs. Interruption logs capture the self-reported interruptions per
participant logged with the FlowLight software. We collected interruption logs

8.4 Evaluation 253

with at least two logged interruptions from 102 participants. We down-selected
these to 36 logs by applying strict filtering criteria to ensure data validity as
follows. We excluded all interruptions in all logs that were accidentally logged
during the first five days after the installation of the FlowLight, as interruptions
in the period right after the installation are not representative due to Hawthorne-
type effects, such as participants getting used to the FlowLight, and co-workers
asking curiosity questions. We then excluded all participants, that logged
interruptions for fewer than three days in the pre- or the post-installation period.
We chose three days as the threshold for each period to ensure a representative
sample of work days for comparison without a too strong bias by individual
outlier days. Each of the 36 interruption logs captured a combined average of
9.0 work days (± 2.2) for pre- and post-period, and contained an average of 28.9
total logged interruptions (± 17.0) per participant for the combined time period.
We used these interruption logs to compare the impact of the FlowLight on the
number of interruptions rated as disruptive by participants.

Usage Data Logs. We captured usage data logs from a total of 179 participants.
These logs consist of computer interaction logs, such as mouse and keyboard
events, and FlowLight usage data. Since we wanted to analyze user behavior
before and after installing the light, we removed any logs that did not include
at least two days before and after installing the light. We also excluded logs
older than January 2016, as key usage messages were not yet logged by our
software, making the analysis infeasible. We ended up with 47 usage data logs
containing a total of 1560 work days. These logs consisted of an average of 7.3
work days (±4.2) prior to light installation and 25.9 work days (±14.0) after
light installation per participant.

We analyzed usage logs in two ways. First, we counted the number of status
change events recorded in the log per day per user for the period before and after
the light installation event. It is worth noting that we only included usage logs
within the five work days and not on weekends. Second, we used the intervals
between status change events detected by one of our algorithms to determine how
much time was spent in each status, again for before and after light installation.

254
Chapter 8. Reducing Interruptions at Work:

A Large-Scale Field Study of FlowLight

To eliminate inappropriate intervals (e.g.,, a user did not turn off the workstation
after work), we only accumulated the duration within 12 hours per day.

Online Logs. We collected online logs for a total of 305 days from November 2,
2015 until September 2, 2016 and from 449 participants. These logs were used to
determine how many users were using the FlowLight on a given day (as shown
in Figure 8.2). We analyzed these logs by summing up the number of unique
identifiers that appeared in the log on a given day, which represents the number
of active users for that day.

Based on participants’ feedback during the period of the field study, we
deployed the three main variations of the algorithm described earlier to set
the status of the FlowLight. We analyzed differences between the data sets
gathered with the three main variations of the algorithms and found no significant
differences between the data collected with any two variations, neither in the
collected survey items, nor the interruption logs. In the following, we will
therefore present the results aggregated over all variations.

8.5 Results

In this section we present the primary findings of our field study. We first examine
the effect of the FlowLight on the cost of interruptions before we examine how
the FlowLight changed participants’ interruption awareness, their interruption-
related behavior, and their perception of productivity. Subsequently, we present
insights on the costs of the approach, on the influence of its accuracy, on its
continued usage by participants and on professional differences.

8.5.1 Reduced Cost of Interruptions

Figure 8.4a is based on the 36 collected interruption logs and illustrates the
distribution of the number of interruptions per day and participant in the period
before and the period after participants had been using the FlowLight for one
week.

8.5 Results 255

Figure 8.4: Logged Interruptions and State Changes Before and After Installing
the FlowLight.

9

8

7

6

5

4

3

2

1

lnterruptions per Day

•

Before Installation After Installation

(a) Interruptions per Par-
ticipant and Day.

35

30

25

20

15

10

5

0

State Changes per Day

•

•

•

•

•

•

•
•

Before Installation After Installation

(b) Number of State
Changes per Participant
and Day.

Figure 8.5: Results of a Subset of the Survey Questions.

56.0%

78.0%

57.9%

58.0%

52.6%

70.8%

20.6%

10.0%

24.0%

19.2%

20.6%

17.2%

23.4%

12.0%

18.2%

23.0%

26.8%

12.0%

I would like to continue using the F ight.

I felt more productive when using the F ight.

With the F ight I had less interruptions at
inopportune moments than I usually have.

My colleagues respected the state of my F ght.

With the F ight I am interrupted less than usual.

The state as represented by the color of the F ight
captured my state of availability for interruptions accurately.

40% 20% 0% 20% 40% 60% 80%

Strongly agree

Agree

Somewhat agree

Somewhat disagree

Disagree

Strongly disagree

Overall, the number of interruptions decreased after the installation and one
week usage of the FlowLight by an average of 1.9 (±1.6) interruptions (46%) per
participant and day, from 4.1 (±2.1) to 2.2 (±1.1). A Wilcoxon signed-rank test
showed that this reduction is statistically significant (Z =-5.0, p <.000001).

A second Wilcoxon signed-rank test only on the number of severe interruptions
(disruptiveness rating of 4 or 5) per day and participant further showed that
there is also a statistically significant reduction with p <.001 and Z = -3.2.

An analysis of the survey results (see Figure 8.5 for more detail) further
supports that installing the FlowLight reduced the cost of interruptions. 55.0%

256
Chapter 8. Reducing Interruptions at Work:

A Large-Scale Field Study of FlowLight

of the 182 survey participants that answered the question stated that they either
strongly agree, agree or agree somewhat that they were interrupted less than usual
during their work, while only 20.3% disagreed with it. Even more participants,
59.3%, agreed that they had less interruptions at inopportune moments than
usual, whereas only 19.8% disagreed with this statement.

During interviews participants echoed this quantitative evidence. In interview
excerpts (full quotes listed in subsequent subsections) participants consistently
mentioned that interruptions were reduced. They claimed that the pilot “..resulted

in less interruptions..” (S126) , eliminated interruptions from colleagues (e.g., “When

[the light]’s red I think they don’t interrupt.” (I11)), and “..didn’t stop [interruptions]

completely but they surely reduced.” (S16) .
Overall, our findings from the interruption logs, survey questions, and in-

terview questions show strong support that the introduction of the FlowLight
reduced the cost of interruptions in terms of the overall number as well as their
severity.

8.5.2 Increased Awareness of Interruption Cost

After using the FlowLight for some time, participants developed a high degree of
awareness for the cost of interruptions:

“It brings more awareness to what people are doing. Sometimes people take it
for granted that people are always interruptible. But there is actually a cost or a
penalty when you interrupt someone. So, I think just the concept is good because it
reminds people that there is sometimes a good time and a bad time to interrupt
people. So, I think just from an awareness campaign, it’s valuable as well.” - I20

“The pilot increased the sensitivity to interruption. Team members think more
about whether an interrupt is necessary and try to find a suitable time.” - S45

The FlowLight thereby served as a physical reminder for the interruptibility
of co-workers in the moment and participants generally respect it and its state:

“It’s kind of a like a mood indicator ... so it tells people the state ... of the owner
of the light. And then it helps people be more aware or attentive to what my current
situation is.” - I18

8.5 Results 257

“I think what really changed is ... a different consciousness about interruptions in
our team and also with my colleagues ... I think ... they really respect the light.
When it’s red I think they don’t interrupt.” - I11

Overall, 70% of the 23 interview participants explicitly stated that the
FlowLight is respected in their offices and 59.6% of 183 survey respondents
agreed that colleagues respected the state of their FlowLight vs. 23.0% that did
not (Figure 8.5).

The increased awareness and respect also triggered participants to change
their behavior in a variety of ways, ranging from thinking twice before asking, to
deferring the interruption, asking before interrupting and changing to a different
communication channel, such as email or instant messaging:

“People ask each other if they are available, even when the light is green, even to
people with no light. When I see the colleague I want to ask a question ... has a
red light, then I wait a while, or write an email.” - S77

“If it’s red, I’ll send them a message so that when they’re no longer busy or
something like that, they’ll see the message and they can respond to it then ... so
it doesn’t require an immediate response” - I19

Fortunately, participants used common sense when working with FlowLights.
If a light was red or red blinking participants would still interrupt if the request
was urgent:

“Once I go up there [to the person] and I see the light and then I also see that
they’re pretty intense then I’ll push it off unless I really need to get answered to.” -
I17

8.5.3 Feeling of Increased Productivity and Self-Motivation

As a further effect of the FlowLight, 58.5% of the survey respondents felt more
productive using it, while only 20.1% disagreed with this (Figure 8.5). This
feeling of increased productivity often stemmed from the fewer interruptions:

“I definitely think it resulted in less interruptions both in person and via Skype.
This resulted in more focus and ability to finish work.” - S126

Another reason for the increased productivity is that the FlowLight serves

258
Chapter 8. Reducing Interruptions at Work:

A Large-Scale Field Study of FlowLight

for some participants as a self-monitoring device that motivates them to become
or stay focused, which, however, can also be distracting at times:

“Mostly it has helped as a personal monitor only for me. If I see the light red, I
sense I am in the flow and I keep working.” - I2

“When I notice that my light is turning yellow, and I’ll feel like, ’Oh yeah, I’ve
been idle’ and then I do something ... I think the other way, yeah, there’s some
effect there too. Like, if I see that it’s red, or even flashing red, then I’m like,
’Yeah, I’ve been very active, or productive, I should keep that going.’ At the same
time, I think it’s also a little bit distracting too. Sometimes just because the light is
there, I turn around to check it.” - I12

8.5.4 Costs of Using the FlowLight

While people experienced reduced interruption costs and increase in productivity,
there are also costs when starting to use the FlowLight. Especially right after
installing it the curiosity of co-workers can lead to an increase of interruptions,
which, however, diminishes after a few days:

“People walk by, they see it, they ask me questions, ’What’s that? How does it
work? What’s going on?’ like this.” - I19

“Initially there were many people just curious to know what the light is about. This
increased the number of interruptions but after few days, people started to respect
[it].” - S16

A few participants also experienced situations in which the FlowLight pro-
voked interruptions, as the green color of the light might be misunderstood as
an invitation (observed by 26% of the interviewed participants):

“What I definitely notice is that green is more inviting. So it actually encourages
people to come by and say, “Hello” for me at least.” - I20

In some cases, changing the interaction culture might require a mandate from
higher up or can even be too expensive:

“The more important issue is for it to work, you have to have people committed
to following the light rules, which probably requires engagement of some higher

8.5 Results 259

management ... and requires introducing the lights to a wider audience.” - I6

“For us ... the main cost of introducing [it is] that you have to change how you
are used to interact with people, that you first have to remember to take a look
at the light. That’s something that’s probably too much for the team. [In] our
environment .. it’s easier to look at the people than at lights.” - I8

If colleagues choose to ignore the light, especially for unimportant interrup-
tions, it can lead to negative emotions:

“So, for us, what we also heard sometimes is that people have the light red, and
others still interrupt them, and they’re like, ’Oh no, I have this light red, why did
they?’ Like it bothers them, and it creates negative emotions almost more than it
creates positive emotions...” - I17

Finally, the public disclosure of the interruptibility status might make people
feel exposed at times (8% of survey participants agree, 6% strongly agree) or
lead to negative feelings:

“Oh, do other people see that my light is yellow? And are they thinking that I’m
not working?” - I12

Like any new technology, there is a cost to adopting the FlowLight. However,
most of the identified costs diminish quickly or can be mitigated by clear direction
from management. Overall though participants predominantly stated that the
colors of the light were interpreted appropriately and were mostly not concerned
about being observed.

8.5.5 Automatic State Changes and Accuracy

The algorithm of the FlowLight caused automatic state changes to indicate a
user is, for instance, available for interruptions or busy and not interruptible.
Figure 8.4b illustrates the change in distribution of the number of state changes
per participant per day before and after installation. A Wilcoxon signed-rank test
with Bonferroni-adjusted alpha levels of .01 per test (.05/5) showed a statistically
significant change in the number of state changes (Z =-5.5337, p ≤ .01) with
an increase in state changes from 1.8 before to 8.4 after. This increase shows
that the automated algorithm is affecting users’ availability status in Skype.

260
Chapter 8. Reducing Interruptions at Work:

A Large-Scale Field Study of FlowLight

Figure 8.6: Time Spent in each State Before (Pre) and After (Post) Installation.

Away Free Busy Dnd
Pre Post Pre Post Pre Post Pre Post

Mean: 40.0% 39.2% 51.2% 47.0% 5.9% 10.9% 2.9% 2.9%

0%

20%

40%

60%

80%

100%

Figure 8.6 presents the time spent in each state before and after light installation.
Analysis of this data shows a small insignificant decrease in time spent in the
available state from 51.2% to 47.0% (Wilcoxon signed-rank test Z =-1.7143, p =
.043) and a significant increase in the time spent in the busy state from 5.9%
to 10.9% (Z =-3.6403, p ≤ .01), a very small yet significant difference in do not
disturb state (Z =-3.2093, p ≤ .01), and no significant changes to time spent in
the away state. Note that during the before-light period the status was already
affected by meetings entered in the calendar, which caused the status to change
to busy.

Participants generally agreed that the FlowLight captured their state of
availability for interruptions accurately:

“I think it [state representativeness] was actually quite good, because what I found
is, if I’m not working on a critical task, for example, responding to email which
usually isn’t critically mind provoking. The light would be green and then people
would take that opportunity to stop by and see what they needed to talk about.
Whereas if I was in the middle of a meeting or if I was more involved in my work,
it would turn red and then at that point they might wait for it to turn green. That’s
my impression.” - I20

8.5 Results 261

Overall, 71.0% of survey respondents agreed that the FlowLight captures
their state accurately while only 15.8% disagreed (Figure 8.5). This shows that
even an interruptibility measure based on a simple algorithm might be accurate
enough to be accepted by users and provide value.

At the same time, interview participants and 64% of our survey respondents
mentioned that there are situations where the FlowLight was not representative
and accurate, partly stemming from limitations in measuring interruptibility
solely with computer interaction data:

“The light was mostly green while debugging code. During debugging, I think
interrupts hurt a lot. On the other hand, the light was sometimes red when working
on documents / e-mails that do not require too much focus.” - S45

“[The] light captures the movements of the mouse and keyboard, and actually, there
are times, which I think of a solution separate from the time, which I implement
[it] so ... I’m the most occupied when I think something and usually, I write it on
a paper or just keep it on my mind.” - I4

In several cases, participants just changed to setting the state manually when
it was not accurate and they wanted to indicate to others that they are available
or do not want to be disturbed:

“There was a case when I was reading an article, and I needed a 100% concentration
on that, so I just manually changed my status to busy. It was helping me a lot. I
think my colleagues are also doing the same when they are engrossed in an article
and they want free time, they’ll just keep their light busy.” - I4

In fact, 32% of our survey respondents reported to have changed their Skype
status (which is linked to the FlowLight) more often after the light was installed,
23% less often and 45% had no changes. With the FlowLight installed, 17%
of participants reported to change their status at least once a day, 37% one to
several times a week, and 46% rarely or never. The job role can also affect the
accuracy of the FlowLight, especially for managers, administrative assistants,
and sales people. For instance, several managers mentioned that interaction was
such a core part of their role that they felt they should always be available and
turned off the automatic feature.

262
Chapter 8. Reducing Interruptions at Work:

A Large-Scale Field Study of FlowLight

8.5.6 Continued Usage of FlowLight

Most participants, 82.6% of the 23 interview participants and 79.1% of the 183
survey participants, stated their intention to keep using the FlowLight even
after the pilot period. This sentiment is reflected in actual usage data: two
months after installing the FlowLight application 85.5% of users remained active
(384/449).

Based on online logging of application instances that we started in November
2015, Figure 8.2 shows the number of active FlowLight users per day. The Figure
also depicts the start date and relative size for the major pilots (e.g., India #1
started in August ’15 and had 80 participants, Norway started in November ’14
and had 44).

Note that due to holidays in different locales, vacation, sick days, and travel
the number of active users per day is consistently about 70% of the number of
unique users over the last month (e.g., a measure of 200 active users per day
indicates about 315 number of unique users in the last month).

In spite of most users continuing to use the FlowLight, about 20% of users
discontinued usage. There were several reasons that we identified from the
interviews and surveys that decreased the benefit of the FlowLight, including
the office layout and the visibility of the LED light, the company culture and
people ignoring the lights, the initial willingness to use such a system, and the
accuracy of the state indicated by the FlowLight. In some cases, the decreased
benefit also resulted in participants ceasing to use the FlowLight:

“From my perspective that was something I was against from the first day but as
I said I decided to join the pilot because I am a team member. ... From time to
time I was looking at it but it was a little bit discouraging because the color of the
light didn’t reflect what I was doing and maybe after one week of using it I gave up
totally.” - I9

8.5.7 Professional Differences in Using the FlowLight

An analysis of the survey responses with respect to professional roles shows that
developers (including testers) and project managers stated more frequently than

8.6 Discussion 263

participants from other working areas that they wanted to continue using the
FlowLight , even though not significantly (82% vs 70% on average) and perceived
their state to be significantly more accurate (77% vs 60%, t =2.51, p =.01). For
project managers, these differences might be explained by the fact that they also
reported more often (but not significantly) to manually change their FlowLight
status on a daily basis than participants from other work areas (24% vs 16%) and
by our experiences gathered during the installation phase, in which managers
often asked to disable the automatic mode completely as they wanted to be
available for most of their work time. For developers, the differences might be
explained by their extensive computer interaction, but future research is needed
to confirm this.

8.6 Discussion

The results of our large-scale and long-term study show that the FlowLight
can reduce the interruption costs for knowledge workers and can increase the
awareness, amongst other benefits. In the following, we discuss implications of our
findings, in particular with respect to the combination of the physical indicator
with the automatic interruptibility measure, the accuracy of the measure, and the
cost of not interrupting. Finally, we discuss threats to validity and limitations of
our study.

8.6.1 Reasons for FlowLight’s Positive Effects

The FlowLight uses a combination of a physical LED light with an automatic
measure based on computer interaction to update the user’s interruptibility status.
The findings show that the approach was well adopted and successfully reduced
in-person interruption costs. This poses the question if these effects might after
all stem solely either from the automatic interruptibility measure or the physical
LED light. With respect to the sole use of an automatic interruptibility measure,
prior related work that used an automatic measure to update computer-based
contact-list style tools, did not find any or the same level of positive effects

264
Chapter 8. Reducing Interruptions at Work:

A Large-Scale Field Study of FlowLight

as our study on both, cost reduction and awareness [Begole et al., 2004; Lai
et al., 2003; Tang et al., 2001]. On the other hand, manually maintaining the
interruptibility state incurs a high cost as shown by previous research [Milewski
and Smith, 2000] and only very few of our users switched to the manual option
in cases the algorithm was not accurate enough or they wanted to ensure some
undisrupted time. In addition, our findings show that while participants have a
high tolerance for the accuracy of the automatic interruptibility status updates,
when inaccuracies happen too often, participants also stop using the approach
altogether. Overall, this indicates that the combination of the physical LED light
and the automatic interruptibility measure is important to provide significant
benefits to knowledge workers to use it in the long-term and that it led to the
positive impact on awareness and interruption cost found in our study.

8.6.2 Accuracy of Automatic Interruptibility Measure

Participants’ high tolerance for the accuracy of the automatic interruptibility
measure of the FlowLight poses the question of how accurate the underlying
measure has to be to provide sufficient benefit to the user. Over the course of
our field study, we adapted the automatic measure two times to account for
early user feedback, yet we did not find any significant differences in the effects
on interruption cost and behavior. However, we intend to study the relation
between accuracy and the effects on interruption cost further in the future.

Also, while participants had a high tolerance, they reported numerous situa-
tions in which they observed the status to be set incorrectly. The most frequent
situation in which the status is incorrect occurs when participants “think” about
something and experience a high cognitive load, yet do not interact with the
computer at all. In future work and with the continuously decreasing invasive-
ness of biometric sensors, we plan to extend our approach to integrate biometric
sensors, to cover these situations more accurately. We further plan to improve
our algorithm by integrating application data, which we were not able to collect
in this study due to privacy constraints. Knowing the current application might
improve the algorithm’s accuracy, e.g., one might be less interruptible while
working in a development related program and more while being in an email

8.6 Discussion 265

client. As the nature of work and interactions vary across work areas and job
roles, tailoring the algorithm accordingly could further improve its accuracy.

8.6.3 Cost of Not Interrupting

As related work has shown, not all interruptions are bad and some are definitely
needed, for instance, to unblock co-workers. By physically indicating knowledge
workers as not interruptible (Busy and DnD state), the FlowLight might prevent
co-workers from interrupting them for important issues, reducing overall team
productivity. The findings of our study on the FlowLight provides evidence
that this cost is minimal at best for two reasons. First, a data analysis of the
usage logs collected for our study shows that the FlowLight ends up having a
significant yet small effect on the time that a knowledge worker is indicated as
not interruptible (+5% per day). Second, while the FlowLight increases the
awareness of the cost of interruptions, participants still interrupt their co-workers
regardless of the FlowLight state if they have an important concern to discuss, as
also stated by 35% of our interview participants, without being explicitly asked.

8.6.4 Threats and Limitations

A major threat to the validity of our study is the completeness of the collected
data. For instance, we were not able to identify participants across different
data sets. While we encouraged participants to share their data and ensured
them that we only use it for research purposes, we could not demand it due to
privacy concerns. We were also not able to collect geographic data due to privacy
concerns and thus were not able to analyze geographic differences.

Similarly, the accuracy of the interruption logs might be incomplete or not
completely accurate. Since interruption logs are based on self-reports, participants
might have forgotten to log some interruptions. Also, the work patterns and
habits of the days on which they logged interruptions before and after the
installation of the FlowLight might have been significantly different, which makes
it more difficult to compare the effect of the FlowLight. We tried to mitigate this
risk by only including the logs of participants who logged interruptions for more

266
Chapter 8. Reducing Interruptions at Work:

A Large-Scale Field Study of FlowLight

than three days before and three days after and by regularly reminding them to
log their interruptions. Furthermore, different participants might have different
criteria and judgement standards for logging interruptions. We tried to mitigate
this fact by instructing participants to only log external in-person interruptions
at work. In addition, by using a paired test that only compares within subject
(Wilcoxon signed rank), we mitigate this effect as long as participants did not
change their definition of an interruption over time.

We limited the validity threats related to generalizability across individuals
and teams by collecting data from 449 participants from twelve countries and
with a variety of job roles. As not all participants are native English speakers,
there might be a response bias. We tried to mitigate this risk by providing
sufficient instructions, opportunity for contacting us if participants had any
questions, and also by visiting each major pilot site to introduce and explain the
study. Based on the large number and diversity of participants, we observed that
responses were not dominantly distributed to extremes, which would indicate
that these knowledge workers were particularly biased based on such difficulties.
From our in-person experience we can report that with very few exceptions we
perceived similar acceptance, respect and in general a very positive perception of
the FlowLight across all locations.

Another threat is the influence of the various algorithms on the study results.
Since we wanted to ensure that participants are satisfied with the FlowLight
and that we take their feedback serious, we evolved the algorithm two times. To
mitigate the risk of a certain bias in the data, we looked for significant differences
between populations where we might expect to find them and did not find any.

8.7 Conclusion

In-person interruptions at the workplace can incur a high cost and consume a lot
of a knowledge worker’s time, if they happen at inopportune moments. While
there are several approaches to possibly reduce the interruption costs, little is
known about the impact of a physical and automatic interruptibility indicator.
In this paper, we presented FlowLight—an automatic interruptibility indicator

8.8 Acknowledgments 267

in the form of a physical traffic-light like LED—and reported on results from a
large-scale and long-term field study with 449 participants from 12 countries. We
found that the FlowLight significantly reduced the number of interruptions by
46%. We also observed an increased awareness of the potential disruptiveness of
interruptions at inopportune moments, which impacts the interaction culture in
a positive way, and that our approach can motivate knowledge workers and make
them feel more productive. We discuss the importance of combining the physical
indicator with the automatic interruptibility measure and the high tolerance of
participants to the accuracy of the approach. Overall, our study provides deep
insights and strong evidence on the very positive effects of the long-term usage
of the FlowLight, and the continued usage of the approach by most participants
indicates the success of the approach.

8.8 Acknowledgments
The authors would like to thank all study participants. This work was funded in
part by SNF.

Bibliography

Agapie, E., Avrahami, D., and Marlow, J. (2016). Staying the Course: System-
Driven Lapse Management for Supporting Behavior Change. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems.

Agarwal, R. and Karahanna, E. (2000). Time Flies When You’re Having Fun:
Cognitive Absorption and Beliefs about Information Technology Usage. MIS
Quarterly, 24(4):665–694.

Albrecht, A. J. (1979). Measuring application development productivity. In IBM
Conference on Application Development, pages 83–92.

Allen, D. (2015). Getting things done: The art of stress-free productivity. Penguin.

Althoff, T., Horvitz, E., White, R. W., and Zeitzer, J. (2017). Harnessing the
web for population-scale physiological sensing: A case study of sleep and
performance. In Proceedings of the 26th International Conference on World
Wide Web, pages 113–122. International World Wide Web Conferences Steering
Committee.

Altmann, E. M. and Trafton, J. G. (2002). Memory for goals: An activation-based
model. Cognitive science, 26(1):39–83.

Altmann, E. M. and Trafton, J. G. (2004). Task interruption: Resumption lag
and the role of cues.

Amabile, T. and Kramer, S. (2011). The progress principle: Using small wins to
ignite joy, engagement, and creativity at work. Harvard Business Press.

270 BIBLIOGRAPHY

Amann, S., Proksch, S., Nadi, S., and Mezini, M. (2016). A study of visual studio
usage in practice. In Proceedings of the 23rd IEEE International Conference
on Software Analysis, Evolution, and Reengineering (SANER ’16).

Ancker, J. S. and Kaufman, D. (2007). Rethinking health numeracy: A multi-
disciplinary literature review. Journal of the American Medical Informatics
Association, 14(6):713–721.

Andreessen, M. (2011). Why software is eating the world. The Wall Street
Journal, August 20, 2011.

Anvik, J., Hiew, L., and Murphy, G. C. (2006). Who should fix this bug? In
Proceedings of the 28th International Conference on Software Engineering,
ICSE ’06, pages 361–370. ACM.

Arciniegas-Mendez, M., Zagalsky, A., Storey, M.-A., and Hadwin, A. F. (2017).
Using the model of regulation to understand software development collaboration
practices and tool support. In Proceedings of the 2017 ACM Conference on
Computer Supported Cooperative Work and Social Computing, CSCW ’17,
pages 1049–1065. ACM.

Arroyo, E. and Selker, T. (2011). Attention and intention goals can mediate
disruption in human-computer interaction. In IFIP Conference on Human-
Computer Interaction, pages 454–470. Springer.

Astromskis, S., Bavota, G., Janes, A., Russo, B., and Penta, M. D. (2017).
Patterns of developers’ behaviour: A 1000-hour industrial study. Journal of
Systems and Software, 132:85–97.

Babar, M. A., Kitchenham, B., and Jeffery, R. (2008). Comparing distributed
and face-to-face meetings for software architecture evaluation: A controlled
experiment. Empirical Software Engineering, 13(1):39–62.

Babbie, E. (2015). The practice of social research. Nelson Education.

BIBLIOGRAPHY 271

Bacchelli, A. and Bird, C. (2013). Expectations, Outcomes, and Challenges of
Modern Code Review. In Proceedings of the 2013 International Conference on
Software Engineering, pages 712–721.

Bailey, B. P. and Iqbal, S. T. (2008). Understanding changes in mental workload
during execution of goal-directed tasks and its application for interruption
management. ACM Transactions on Computer-Human Interaction (TOCHI),
14(4):21.

Bailey, B. P. and Konstan, J. A. (2006). On the need for attention-aware systems:
Measuring effects of interruption on task performance, error rate, and affective
state. Computers in human behavior, 22(4):685–708.

Bailey, B. P., Konstan, J. A., and Carlis, J. V. (2001). The effects of interruptions
on task performance, annoyance, and anxiety in the user interface. In Interact,
volume 1, pages 593–601.

Balog, K., Azzopardi, L., and de Rijke, M. (2006). Formal models for expert find-
ing in enterprise corpora. In Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’06, pages 43–50. ACM.

Baltes, S. and Diehl, S. (2018). Towards a theory of software development
expertise. In Proceedings of the 2018 26th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 187–200. ACM.

Bao, L., Xing, Z., Xia, X., Lo, D., and Hassan, A. E. (2018). Inference of
development activities from interaction with uninstrumented applications.
Empirical Software Engineering, 23(3):1313–1351.

Barker, C. (2003). Cultural studies: Theory and practice. Sage.

Barley, S. R., Meyerson, D. E., and Grodal, S. (2011). E-mail as a source and
symbol of stress. Organization Science, 22(4):887–906.

272 BIBLIOGRAPHY

Bartram, L. (2015). Design challenges and opportunities for eco-feedback in the
home. IEEE Computer Graphics and Applications, 35(4).

Basseville, M., Nikiforov, I. V., et al. (1993). Detection of abrupt changes: theory
and application, volume 104. Prentice Hall Englewood Cliffs.

Baumer, E. P., Khovanskaya, V., Matthews, M., Reynolds, L., Schwanda Sosik,
V., and Gay, G. (2014). Reviewing reflection: On the use of reflection in
interactive system design. In Proceedings of the 2014 Conference on Designing
Interactive Systems, DIS ’14, pages 93–102. ACM.

Beecham, S., Baddoo, N., Hall, T., Robinson, H., and Sharp, H. (2008). Motiva-
tion in software engineering: A systematic literature review. Information and
Software Technology, 50(9):860 – 878.

Begole, J. B., Matsakis, N. E., and Tang, J. C. (2004). Lilsys: sensing unavail-
ability. In Proceedings of the 2004 ACM conference on Computer supported
cooperative work, pages 511–514. ACM.

Begole, J. B., Tang, J. C., Smith, R. B., and Yankelovich, N. (2002). Work
Rhythms: Analyzing Visualizations of Awareness Histories of Distributed
Groups. 230.

Beller, M., Gousios, G., Panichella, A., Proksch, S., Amann, S., and Zaidman, A.
(2017). Developer Testing in The IDE: Patterns, Beliefs, and Behavior. IEEE
Transactions on Software Engineering, 14(8):1–23.

Beller, M., Levaja, I., Panichella, A., Gousios, G., and Zaidman, A. (2016). How
to catch ’em all: Watchdog, a family of ide plug-ins to assess testing. In 2016
IEEE/ACM 3rd International Workshop on Software Engineering Research
and Industrial Practice (SER IP), pages 53–56.

Bellezza, F. S. and Hartwell, T. C. (1981). Cuing subjective units. The Journal
of Psychology, 107(2):209–218.

BIBLIOGRAPHY 273

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate:
a practical and powerful approach to multiple testing. Journal of the royal
statistical society. Series B (Methodological), pages 289–300.

Bentley, F., Tollmar, K., Stephenson, P., and Levy Laura (2013). Health Mashups:
Presenting Statistical Patterns between Wellbeing Data and Context in Natural
Language to Promote Behavior Change. 20(5):1–27.

Biehl, J. T., Czerwinski, M., Smith, G., and Robertson, G. G. (2007). Fastdash:
A visual dashboard for fostering awareness in software teams. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’07,
pages 1313–1322. ACM.

Bjelica, M. Z., Mrazovac, B., Papp, I., and Teslic, N. (2011). Busy flag just got
better: Application of lighting effects in mediating social interruptions. In
MIPRO, 2011 Proceedings of the 34th International Convention, pages 975–980.
IEEE.

Blackburn, J., Scudder, G., and Van Wassenhove, L. (1996). Improving speed and
productivity of software development: a global survey of software developers.
IEEE Transactions on Software Engineering, 22(12):875–885.

Blair, E. and Burton, S. (1987). Cognitive processes used by survey respondents
to answer behavioral frequency questions. Journal of consumer research,
14(2):280–288.

Blynclight, E. (2019). http://www.embrava.com/. retrieved March 12, 2019.

Boehm, B. W. (1987). Improving software productivity. In Computer. Citeseer.

Boehm, B. W., Madachy, R., Steece, B., et al. (2000). Software cost estimation
with Cocomo II with Cdrom. Prentice Hall PTR.

Borst, J. P., Taatgen, N. A., and van Rijn, H. (2015). What makes interruptions
disruptive?: A process-model account of the effects of the problem state
bottleneck on task interruption and resumption. In Proceedings of the 33rd

http://www.embrava.com/

274 BIBLIOGRAPHY

annual ACM conference on human factors in computing systems, pages 2971–
2980. ACM.

Bradburn, N. M. (2010). Recall period in consumer expenditure surveys program.

Bradburn, N. M., Rips, L. J., and Shevell, S. K. (1987). Answering autobio-
graphical questions: The impact of memory and inference on surveys. Science,
236(4798):157–161.

Bradley, N. C., Fritz, T., and Holmes, R. (2018). Context-aware conversational
developer assistants. In Proceedings of the 40th International Conference on
Software Engineering, ICSE 2018, pages 993–1003.

Bragdon, A., Reiss, S. P., Zeleznik, R., Karumuri, S., Cheung, W., Kaplan, J.,
Coleman, C., Adeputra, F., and LaViola, Jr., J. J. (2010a). Code bubbles:
Rethinking the user interface paradigm of integrated development environments.
In Proceedings of the 32Nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, pages 455–464. ACM.

Bragdon, A., Zeleznik, R., Reiss, S. P., Karumuri, S., Cheung, W., Kaplan, J.,
Coleman, C., Adeputra, F., and LaViola, Jr., J. J. (2010b). Code bubbles:
A working set-based interface for code understanding and maintenance. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’10, pages 2503–2512. ACM.

Brath, R. and Peters, M. (2004). Dashboard design: Why design is important.
DM Direct, 85.

Braun, V. and Clarke, V. (2006). Using thematic analysis in psychology. Quali-
tative research in psychology, 3:77–101.

Bravata, D. M., Smith-Spangler, C., Sundaram, V., Gienger, A. L., Lin, N.,
Lewis, R., Stave, C. D., Olkin, I., and Sirard, J. R. (2007). Using pedometers
to increase physical activity and improve health: A systematic review. Jama,
298(19):2296–2304.

BIBLIOGRAPHY 275

Brdiczka, O., Su, N. M., and Begole, J. B. (2010). Temporal task footprinting:
identifying routine tasks by their temporal patterns. In Proceedings of the 15th
international conference on Intelligent user interfaces, pages 281–284. ACM.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Brockbank, A. and McGill, I. (2007). Facilitating reflective learning in higher
education. McGraw-Hill Education (UK).

Brooks Jr, F. P. (1995). The Mythical Man-Month: Essays on Software Engi-
neering, Anniversary Edition, 2/E. Pearson Education India.

Brown, A. (1992). Design experiments: Theoretical and methodological challenges
in creating complex interventions in classroom settings. Journal of the Learning
Sciences, 2(2):141–178.

Brown, C., Efstratiou, C., Leontiadis, I., Quercia, D., and Mascolo, C. (2014).
Tracking serendipitous interactions: How individual cultures shape the office.
pages 1072–1081.

Bruegge, B. and Dutoit, A. H. (2004). Object-Oriented Software Engineering
Using UML, Patterns and Java-(Required), volume 2004. Prentice Hall.

Burnett, M., Stumpf, S., Macbeth, J., Makri, S., Beckwith, L., Kwan, I., Peters,
A., and Jernigan, W. (2016). Gendermag: A method for evaluating software’s
gender inclusiveness. Interacting with Computers, 28(6):760–787.

Calvo, R. A. and Peters, D. (2014). Self-Awareness and Self-Compassion, page
304. MIT Press.

Card, S. K. and Henderson Jr, A. (1986). A multiple, virtual-workspace interface
to support user task switching. ACM SIGCHI Bulletin, 17(SI):53–59.

Cataldo, M., Herbsleb, J. D., and Carley, K. M. (2008). Socio-technical congru-
ence: A framework for assessing the impact of technical and work dependencies
on software development productivity. In Proceedings of the Second ACM-IEEE

276 BIBLIOGRAPHY

International Symposium on Empirical Software Engineering and Measurement,
ESEM ’08, pages 2–11. ACM.

Chalmers, T. C., Smith Jr, H., Blackburn, B., Silverman, B., Schroeder, B.,
Reitman, D., and Ambroz, A. (1981). A method for assessing the quality of a
randomized control trial. Controlled clinical trials, 2(1):31–49.

Charmaz, K. (2014). Constructing grounded theory. Sage.

Chatzoglou, P. D. and Macaulay, L. A. (1997). The importance of human factors
in planning the requirements capture stage of a project. International Journal
of Project Management, 15(1):39–53.

Chen, D., Hart, J., and Vertegaal, R. (2007). Towards a physiological model of
user interruptability. In IFIP Conference on Human-Computer Interaction,
pages 439–451. Springer.

Choe, E. K., Lee, N. B., Lee, B., Pratt, W., and Kientz, J. a. (2014). Un-
derstanding quantified-selfers’ practices in collecting and exploring personal
data. Proceedings of the 32nd annual ACM conference on Human factors in
computing systems (CHI ’14), pages 1143–1152.

Chong, J. and Siino, R. (2006). Interruptions on software teams: a comparison
of paired and solo programmers. In Proceedings of the 2006 20th anniversary
conference on Computer supported cooperative work, pages 29–38. ACM.

Claes, M., Mäntylä, M. V., Kuutila, M., and Adams, B. (2018). Do programmers
work at night or during the weekend? In Proceedings of the 40th International
Conference on Software Engineering, pages 705–715. ACM.

Claessens, B., Eerde, W., G. Rutte, C., and Roe, R. (2010). Things to do today...:
A daily diary study on task completion at work. Applied Psychology, 59:273 –
295.

Clear, J. (2018). Atomic Habits: Tiny Changes, Remarkable Results. Penguin
Publishing Group.

BIBLIOGRAPHY 277

Codealike (2019). http://codealike.com. Retrieved March 19, 2019.

Collins, E. I. M., Cox, A. L., Bird, J., and Harrison, D. (2014). Social networking
use and rescuetime: The issue of engagement. In Proceedings of the 2014
ACM International Joint Conference on Pervasive and Ubiquitous Computing:
Adjunct Publication, UbiComp ’14 Adjunct, pages 687–690. ACM.

Coman, I. D. and Sillitti, A. (2008). Automated identification of tasks in
development sessions. In 2008 16th IEEE International Conference on Program
Comprehension, pages 212–217.

Consolvo, S., Klasnja, P., McDonald, D. W., Avrahami, D., Froehlich, J.,
LeGrand, L., Libby, R., Mosher, K., and Landay, J. A. (2008a). Flowers
or a robot army?: Encouraging awareness & activity with personal, mobile
displays. In Proceedings of the 10th International Conference on Ubiquitous
Computing, UbiComp ’08, pages 54–63. ACM.

Consolvo, S., McDonald, D. W., and Landay, J. A. (2009). Theory-driven design
strategies for technologies that support behavior change in everyday life. In
Proceedings of the SIGCHI conference on human factors in computing systems,
pages 405–414. ACM.

Consolvo, S., McDonald, D. W., Toscos, T., Chen, M. Y., Froehlich, J., Harrison,
B., Klasnja, P., LaMarca, A., LeGrand, L., Libby, R., Smith, I., and Landay,
J. A. (2008b). Activity sensing in the wild: a field trial of ubifit garden.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’08, pages 1797–1806. ACM.

Consolvo, S. and Walker, M. (2003). Using the experience sampling method to
evaluate ubicomp applications. IEEE Pervasive Computing, 2(2):24–31.

Cordeiro, F., Bales, E., Cherry, E., and Fogarty, J. (2015). Rethinking the mobile
food journal: Exploring opportunities for lightweight photo-based capture.
In Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems, pages 3207–3216. ACM.

http://codealike.com

278 BIBLIOGRAPHY

Couger, J. D., Adelsberger, H., Borovits, I., Zviran, M., and Motiwalla, J. (1990).
Commonalities in motivating environments for programmer/analysts in austria,
israel, singapore, and the usa. Information & Management, 18(1):41–46.

Csikszentmihalyi, M. and Larson, R. (2014). Validity and reliability of the
experience-sampling method. In Flow and the foundations of positive psychol-
ogy, pages 35–54. Springer.

Cutrell, E., Czerwinksi, M., and Horvitz, E. (2000). Notification, Disruption,
and Memory: Effects of Messaging Interruptions on Memory and Performance.
(1999).

Czerwinski, M., Cutrell, E., and Horvitz, E. (2000). Instant messaging: Effects
of relevance and timing. In People and Computers XIV: Proceedings of HCI
2000, volume 2, pages 71–76.

Czerwinski, M., Horvitz, E., and Wilhite, S. (2004). A diary study of task
switching and interruptions. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 175–182. ACM.

Dabbish, L. A. and Kraut, R. E. (2006). Email overload at work: an analysis of
factors associated with email strain. In Proceedings of the 2006 20th anniversary
conference on Computer supported cooperative work, pages 431–440. ACM.

Danaher, K. and Crandall, C. S. (2008). Stereotype threat in applied settings
re-examined. Journal of Applied Social Psychology, 38(6):1639–1655.

Daniel, W. W. and Cross, C. L. (2018). Biostatistics: a foundation for analysis
in the health sciences. Wiley.

Daskalova, N., Metaxa-Kakavouli, D., Tran, A., Nugent, N., Boergers, J.,
McGeary, J., and Huang, J. (2016). SleepCoacher: A Personalized Automated
Self-Experimentation System for Sleep Recommendations. In Proceedings of
the 29th Annual Symposium on User Interface Software and Technology, pages
347–358.

BIBLIOGRAPHY 279

DeMarco, T. and Lister, T. (1985). Programmer performance and the effects of
the workplace. In Proceedings of the 8th international conference on Software
engineering, pages 268–272. IEEE Computer Society Press.

DeMarco, T. and Lister, T. (2013). Peopleware: productive projects and teams.
Addison-Wesley.

DeskTime (2019). https://desktime.com. Retrieved January 28, 2019.

Devanbu, P., Karstu, S., Melo, W., and Thomas, W. (1996). Analytical and
empirical evaluation of software reuse metrics. In Proceedings of the 18th
International Conference on Software Engineering, ICSE ’96, pages 189–199.
IEEE.

Di Stefano, G., Gino, F., Pisano, G. P., and Staats, B. R. (2016). Making
experience count: The role of reflection in individual learning. Harvard
Business School NOM Unit Working Paper, (14-093):14–093.

Dodd, N. G. and Ganster, D. C. (1996). The interactive effects of variety, auton-
omy, and feedback on attitudes and performance. Journal of Organizational
Behavior, 17(4):329–347.

Donohue, B. (2018). Three-day no-meeting schedule for en-
gineers. https://medium.com/@Pinterest_Engineering/
three-day-no-meeting-schedule-for-engineers-fca9f857a567.

Doran, G. T. (1981). There’s a smart way to write management’s goals and
objectives. Management review, 70(11):35–36.

Dragunov, A. N., Dietterich, T. G., Johnsrude, K., McLaughlin, M., Li, L.,
and Herlocker, J. L. (2005). Tasktracer: A desktop environment to support
multi-tasking knowledge workers. In Proceedings of the 10th International
Conference on Intelligent User Interfaces, IUI ’05, pages 75–82. ACM.

Edelson, M., Sharot, T., Dolan, R. J., and Dudai, Y. (2011). Following the crowd:
brain substrates of long-term memory conformity. science, 333(6038):108–111.

https://desktime.com
https://medium.com/@Pinterest_Engineering/three-day-no-meeting-schedule-for-engineers-fca9f857a567
https://medium.com/@Pinterest_Engineering/three-day-no-meeting-schedule-for-engineers-fca9f857a567

280 BIBLIOGRAPHY

Enns, H. G., Ferratt, T. W., and Prasad, J. (2006). Beyond stereotypes of it
professionals: Implications for it hr practices. Commun. ACM, 49(4).

Epstein, D. A., Avrahami, D., and Biehl, J. T. (2016a). Taking 5: Work-
Breaks, Productivity, and Opportunities for Personal Informatics for Knowledge
Workers. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems.

Epstein, D. A., Caraway, M., Johnston, C., Ping, A., Fogarty, J., and Munson,
S. A. (2016b). Beyond Abandonment to Next Steps: Understanding and
Designing for Life After Personal Informatics Tool Use. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems, pages
1109–1113.

Epstein, D. A., Ping, A., Fogarty, J., and Munson, S. A. (2015). A lived
informatics model of personal informatics. In Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing, pages
731–742. ACM.

Fisher, C. D. (2000). Mood and emotions while working: missing pieces of job
satisfaction? Journal of Organizational Behavior, 21(2):185–202.

Fitbit (2019). http://fitbit.com. Retrieved March 19, 2019.

Flyvbjerg, B. (2006). Five misunderstandings about case-study research. Quali-
tative inquiry, 12(2):219–245.

Fogarty, J., Ko, A. J., Aung, H. H., Golden, E., Tang, K. P., and Hudson,
S. E. (2005). Examining task engagement in sensor-based statistical models
of human interruptibility. Proceedings of the SIGCHI conference on Human
factors in computing systems - CHI ’05, page 331.

Fogarty, J., Lai, J., and Christensen, J. (2004). Presence versus availability: the
design and evaluation of a context-aware communication client. International
Journal of Human-Computer Studies, 61(3):299–317.

http://fitbit.com

BIBLIOGRAPHY 281

Fogg, B. J. (2003). Persuasive Technology: Using Computers to Change What
We Think and Do. Interactive Technologies. Elsevier Science.

Fredrickson, B. L. (1998). What good are positive emotions? Review of general
psychology, 2(3):300.

Fredrickson, B. L., Cohn, M. A., Coffey, K. A., Pek, J., and Finkel, S. M. (2008).
Open hearts build lives: positive emotions, induced through loving-kindness
meditation, build consequential personal resources. Journal of personality and
social psychology, 95(5):1045.

Fritz, T., Huang, E. M., Murphy, G. C., and Zimmermann, T. (2014). Persuasive
technology in the real world: A study of long-term use of activity sensing
devices for fitness. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’14, pages 487–496. ACM.

Fritz, T. and Murphy, G. C. (2010). Using information fragments to answer the
questions developers ask. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, volume 1, page 175. ACM
Press.

Galesic, M. and Garcia-Retamero, R. (2011). Graph literacy a cross-cultural
comparison. Medical Decision Making, 31(3):444–457.

Gasser, R., Brodbeck, D., Degen, M., Luthiger, J., Wyss, R., and Reichlin, S.
(2006). Persuasiveness of a mobile lifestyle coaching application using social
facilitation. In International Conference on Persuasive Technology, pages
27–38. Springer.

Goler, L., Gale, J., and Grant, A. (2019). Let’s not kill
performance evaluations yet. https://hbr.org/2016/11/
lets-not-kill-performance-evaluations-yet.

Gonçalves, M. K., de Souza, L., and González, V. M. (2011). Collaboration,
information seeking and communication: An observational study of software

https://hbr.org/2016/11/lets-not-kill-performance-evaluations-yet
https://hbr.org/2016/11/lets-not-kill-performance-evaluations-yet

282 BIBLIOGRAPHY

developers’ work practices. Journal of Universal Computer Science, 17(14):1913–
1930.

González, V. M. and Mark, G. (2004). Constant, constant, multi-tasking craziness:
Managing multiple working spheres. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’04, pages 113–120. ACM.

Graziotin, D., Fagerholm, F., Wang, X., and Abrahamsson, P. (2017). On the
Unhappiness of Software Developers. pages 324–333.

Graziotin, D., Wang, X., and Abrahamsson, P. (2014a). Happy software develop-
ers solve problems better: psychological measurements in empirical software
engineering. PeerJ, 2:e289.

Graziotin, D., Wang, X., and Abrahamsson, P. (2014b). Software developers,
moods, emotions, and performance. IEEE Software, 31(4):24–27.

Graziotin, D., Wang, X., and Abrahamsson, P. (2015a). Do feelings matter?
on the correlation of affects and the self-assessed productivity in software
engineering. Journal of Software: Evolution and Process, 27(7):467–487.

Graziotin, D., Wang, X., and Abrahamsson, P. (2015b). How do you feel,
developer? an explanatory theory of the impact of affects on programming
performance. PeerJ Computer Science, 1:e18.

Guest, G., Bunce, A., and Johnson, L. (2006). How many interviews are enough?
an experiment with data saturation and variability. Field methods, 18(1):59–82.

Gustafson, K. L. and Bennett Jr, W. (2002). Promoting learner reflection: Issues
and difficulties emerging from a three-year study. Technical report, Georgia
University Athens, Department of Instructional Technology.

Gustafsson, F. and Gustafsson, F. (2000). Adaptive filtering and change detection,
volume 1. Citeseer.

BIBLIOGRAPHY 283

Hassib, M., Khamis, M., Friedl, S., Schneegass, S., and Alt, F. (2017). Brainat-
work: Logging cognitive engagement and tasks in the workplace using elec-
troencephalography. In Proceedings of the 16th International Conference on
Mobile and Ubiquitous Multimedia, MUM ’17, pages 305–310. ACM.

Herrmanny, K., Ziegler, J., and Dogangün, A. (2016). Supporting users in setting
effective goals in activity tracking. In Proceedings of the 11th International
Conference on Persuasive Technology - Volume 9638, Persuasive 2016, pages
15–26. Springer-Verlag.

Hincapié-Ramos, J. D., Voida, S., and Mark, G. (2011a). A design space
analysis of availability-sharing systems. In Proceedings of the 24th annual
ACM symposium on User interface software and technology, pages 85–96. ACM.

Hincapié-Ramos, J. D., Voida, S., and Mark, G. (2011b). Sharing availabil-
ity information with interruptme. In Proceedings of the 13th international
conference on Ubiquitous computing, pages 477–478. ACM.

Ho, J. and Intille, S. S. (2005). Using context-aware computing to reduce the
perceived burden of interruptions from mobile devices. In Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 909–918.
ACM.

Hofstede, G. (1994). Cultures and Organizations: Software of the Mind : Inter-
cultural Cooperation and Its Importance for Survival. HarperCollins.

Hofstede, G. H. and Arrindell, W. A. (1998). Masculinity and femininity: The
taboo dimension of national cultures, volume 3 of Cross Cultural Psychology.
Sage.

Hollis, V., Konrad, A., and Whittaker, S. (2015). Change of Heart: Emotion
Tracking to Promote Behavior Change. Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems (CHI ’15), pages 2643–
2652.

284 BIBLIOGRAPHY

Horvitz, E., Koch, P., Kadie, C. M., and Jacobs, A. (2002). Coordinate: Proba-
bilistic forecasting of presence and availability. In Proceedings of the Eighteenth
conference on Uncertainty in artificial intelligence, pages 224–233. Morgan
Kaufmann Publishers Inc.

Huang, D., Tory, M., and Bartram, L. (2016). A Field Study of On-Calendar
Visualizations. In Proceedings of Graphics Interface 2016, pages 13–20.

Hudson, R. L. and Davis, J. L. (1972). The effects of intralist cues, extralist cues,
and category names on categorized recall. Psychonomic Science, 29(2):71–75.

Hudson, S., Fogarty, J., Atkeson, C., Avrahami, D., Forlizzi, J., Kiesler, S., Lee,
J., and Yang, J. (2003). Predicting human interruptibility with sensors: a
wizard of oz feasibility study. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 257–264. ACM.

Humphrey, W. S. (1996). Using a defined and measured personal software process.
IEEE, 13(3):77–88.

Humphrey, W. S. (2000). The Personal Software Process (PSP). (November).

Iqbal, S. T. and Bailey, B. P. (2007). Understanding and developing models
for detecting and differentiating breakpoints during interactive tasks. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’07, pages 697–706. ACM.

Iqbal, S. T. and Bailey, B. P. (2008). Effects of intelligent notification management
on users and their tasks. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 93–102. ACM.

Iqbal, S. T. and Horvitz, E. (2007). Disruption and recovery of computing tasks:
Field study, analysis, and directions. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’07, pages 677–686. ACM.

Isaacs, E., Whittaker, S., Frohlich, D., and O’Conaill, B. (1997). Informal com-
munication re-examined: New functions for video in supporting opportunistic
encounters. Video-mediated communication, 997:459–485.

BIBLIOGRAPHY 285

Jakobsen, M. R., Fernandez, R., Czerwinski, M., Inkpen, K., Kulyk, O., and
Robertson, G. G. (2009). Wipdash: Work item and people dashboard for soft-
ware development teams. In IFIP Conference on Human-Computer Interaction,
pages 791–804. Springer.

John, O. P. and Srivastava, S. (1999). The big five trait taxonomy: History,
measurement, and theoretical perspectives. Handbook of personality: Theory
and research, 2(1999):102–138.

Johnson, P. M. and Disney, A. M. (1998). The personal software process: A
cautionary case study. IEEE Software, 15(6):85–88.

Johnson, P. M., Kou, H., Agustin, J., Chan, C., Moore, C., Miglani, J., Zhen, S.,
and Doane, W. E. J. (2003). Beyond the personal software process: Metrics
collection and analysis for the differently disciplined. In Proceedings of the 25th
International Conference on Software Engineering, ICSE ’03, pages 641–646.
IEEE.

Johnson, S. M. and White, G. (1971). Self-observation as an agent of behavioral
change. Behavior Therapy, 2(4):488–497.

Jones, C. (1994). Software metrics: good, bad and missing. Computer, 27(9):98–
100.

Jones, S. L. and Kelly, R. (2017). Dealing With Information Overload in
Multifaceted Personal Informatics Systems. Human Computer Interaction,
pages 1–48.

Joo, B. K. B. and Park, S. (2010). Career satisfaction, organizational commitment,
and turnover intention: The effects of goal orientation, organizational learning
culture and developmental feedback. Leadership & Organization Development
Journal, 31(6):482–500.

Kahn, B. E. and Isen, A. M. (1993). The influence of positive affect on variety
seeking among safe, enjoyable products. Journal of Consumer Research,
20(2):257–270.

286 BIBLIOGRAPHY

Kalliamvakou, E., Bird, C., Zimmermann, T., Begel, A., DeLine, R., and German,
D. M. (2019). What makes a great manager of software engineers? IEEE
Transactions on Software Engineering, 45(1):87–106.

Kandolin, I., Härmä, M., and Toivanen, M. (2001). Flexible working hours and
well-being in finnland. Journal of Human Ergology, 30(1-2):35–40.

Kaufman, L. and Rousseeuw, P. (1987). Clustering by means of medoids. North-
Holland.

Kay, M., Choe, E. K., Shepherd, J., Greenstein, B., Watson, N., Consolvo, S.,
and Kientz, J. A. (2012). Lullaby: A capture and access system for under-
standing the sleep environment. In Proceedings of the 2012 ACM Conference
on Ubiquitous Computing, UbiComp ’12, pages 226–234. ACM.

Kelly, A. (2008). Changing Software Development: Learning to Become Agile.
Wiley.

Kersten, M. and Murphy, G. C. (2006). Using task context to improve program-
mer productivity. In Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, SIGSOFT ’06/FSE-14,
pages 1–11. ACM.

Kersten-van Dijk, E. T., Westerink, J. H., Beute, F., and IJsselsteijn, W. A.
(2017). Personal informatics, self-insight, and behavior change: A critical
review of current literature. Human–Computer Interaction, 32(5-6):268–296.

Kevic, K. and Fritz, T. (2017). Towards activity-aware tool support for change
tasks. In 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 171–182.

Khan, I. A., Brinkman, W.-P., and Hierons, R. M. (2011). Do moods affect
programmers’ debug performance? Cognition, Technology & Work, 13(4):245–
258.

Kim, Y.-H. and Choe, E. K. (2019). Understanding Personal Productivity: How
Knowledge Workers Define, Evaluate, and Reflect on Their Productivity. In

BIBLIOGRAPHY 287

Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems - CHI ’19, number May.

Kim, Y.-H., Jeon, J. H., Choe, E. K., Lee, B., Kim, K., and Seo, J. (2016).
TimeAware: Leveraging Framing Effects to Enhance Personal Productivity.
In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (CHI ’16), pages 272–283.

Kitchenham, B. A. and Pfleeger, S. L. (2008). Personal opinion surveys. In
Guide to advanced empirical software engineering, pages 63–92. Springer.

Klasnja, P., Consolvo, S., McDonald, D. W., Landay, J. A., and Pratt, W. (2009).
Using mobile & personal sensing technologies to support health behavior change
in everyday life: lessons learned. In AMIA Annual Symposium Proceedings,
volume 2009, page 338. American Medical Informatics Association.

Klasnja, P., Consolvo, S., and Pratt, W. (2011). How to Evaluate Technologies
for Health Behavior Change in HCI Research. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 3063–3072.

Ko, A. J., DeLine, R., and Venolia, G. (2007). Information needs in collocated
software development teams. In Proceedings of the 29th International Con-
ference on Software Engineering, ICSE ’07, pages 344–353. IEEE Computer
Society.

Kocielnik, R., Avrahami, D., Marlow, J., Lu, D., and Hsieh, G. (2018). Designing
for workplace reflection: a chat and voice-based conversational agent. In
Proceedings of the 2018 on Designing Interactive Systems Conference 2018,
pages 881–894. ACM.

Koldijk, S., Staalduinen, M. V., Raaijmakers, S., and Kraaij, W. (2011). Activity-
Logging for Self-Coaching of Knowledge Workers. pages 0–3.

Koldijk, S., van Staalduinen, M., Neerincx, M., and Kraaij, W. (2012). Real-
time task recognition based on knowledge workers’ computer activities. In

288 BIBLIOGRAPHY

Proceedings of the 30th European Conference on Cognitive Ergonomics, ECCE
’12, pages 152–159. ACM.

Krogstie, B., Prilla, M., Wessel, D., Knipfer, K., and Pammer, V. (2012).
Computer support for reflective learning in the workplace: A model. pages
151–153.

Lai, J., Yoshihama, S., Bridgman, T., Podlaseck, M., Chou, P. B., and Wong,
D. C. (2003). Myteam: Availability awareness through the use of sensor data.
In INTERACT.

Lange, P. G. (2008). Interruptions and intertasking in distributed knowledge
work. NAPA Bulletin, 30(1):128–147.

Larson, R. and Csikszentmihalyi, M. (2014). The experience sampling method.
In Flow and the foundations of positive psychology, pages 21–34. Springer.

LaToza, T. D., Venolia, G., and DeLine, R. (2006). Maintaining mental models:
a study of developer work habits. In Proceedings of the 28th international
conference on Software engineering, pages 492–501. ACM.

LeBoeuf, R. A. and Shafir, E. (2009). Anchoring on the" here" and" now" in
time and distance judgments. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 35(1):81.

Lee, J., Walker, E., Burleson, W., and Hekler, E. B. (2014). Exploring users’
creation of personalized behavioral plans. In Proceedings of the 2014 ACM In-
ternational Joint Conference on Pervasive and Ubiquitous Computing: Adjunct
Publication, pages 703–706. ACM.

Lee, J., Walker, E., Burleson, W., and Hekler, E. B. (2015). Understanding users’
creation of behavior change plans with theory-based support. In Proceedings
of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in
Computing Systems, pages 2301–2306. ACM.

Lee, J., Walker, E., Burleson, W., Kay, M., Buman, M., and Hekler, E. B.
(2017). Self-Experimentation for Behavior Change. In Proceedings of the 2017

BIBLIOGRAPHY 289

CHI Conference on Human Factors in Computing Systems - CHI ’17, pages
6837–6849.

Lemaître, G., Nogueira, F., and Aridas, C. K. (2017). Imbalanced-learn: A
python toolbox to tackle the curse of imbalanced datasets in machine learning.
Journal of Machine Learning Research, 18(17):1–5.

Li, I., Dey, A., and Forlizzi, J. (2010). A stage-based model of personal informatics
systems. Proceedings of the 28th international conference on Human factors
in computing systems (CHI ’10), page 557.

Li, I., Dey, A., and Forlizzi, J. (2011). Understanding my data, myself: sup-
porting self-reflection with Ubicomp technologies. In Proceedings of the 13th
international conference on Ubiquitous computing (UbiComp ’11), page 405.

Li, P. L., Ko, A. J., and Zhu, J. (2015). What makes a great software engineer?
In Proceedings of the 37th International Conference on Software Engineering -
Volume 1, ICSE ’15, pages 700–710. IEEE Press.

Liaw, A., Wiener, M., et al. (2002). Classification and regression by randomforest.
R news, 2(3):18–22.

Lin, J., Mamykina, L., Lindtner, S., Delajoux, G., and Strub, H. (2006).
Fish’n’Steps: Encouraging Physical Activity with an Interactive Computer
Game. In UbiComp 2006: Ubiquitous Computing, volume 4206 of Lecture
Notes in Computer Science, chapter 16, pages 261–278.

Locke, E. A. and Latham, G. P. (1990). A theory of goal setting & task perfor-
mance. Prentice-Hall, Inc.

Locke, E. A. and Latham, G. P. (2002). Building a practically useful theory of
goal setting and task motivation: A 35-year odyssey. American psychologist,
57(9):705.

Lott, Y. and Chung, H. (2016). Gender discrepancies in the outcomes of schedule
control on overtime hours and income in germany. European Sociological
Review, 32(6):752–765.

290 BIBLIOGRAPHY

Lu, D., Marlow, J., Kocielnik, R., and Avrahami, D. (2018). Challenges and
opportunities for technology-supported activity reporting in the workplace.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems, CHI ’18, pages 170:1–170:12. ACM.

Maalej, W., Ellmann, M., and Robbes, R. (2017). Using contexts similarity to
predict relationships between tasks. Journal of Systems and Software, 128:267
– 284.

Mamykina, L., Mynatt, E., Davidson, P., and Greenblatt, D. (2008). Mahi:
Investigation of social scaffolding for reflective thinking in diabetes management.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’08, pages 477–486. ACM.

Manictime (2019). http://manictime.com. Retrieved March 19, 2019.

Marcus, B. and Schütz, A. (2005). Who are the people reluctant to participate
in research? personality correlates of four different types of nonresponse as
inferred from self- and observer ratings. Journal of Personality, 73(4):959–984.

Mark, G., Czerwinski, M., and Iqbal, S. T. (2018). Effects of Individual Differences
in Blocking Workplace Distractions. In CHI ’18. ACM.

Mark, G., Gonzalez, V. M., and Harris, J. (2005). No task left behind?: examining
the nature of fragmented work. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 321–330. ACM.

Mark, G., Gudith, D., and Klocke, U. (2008a). The cost of interrupted work:
more speed and stress. In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, pages 107–110. ACM.

Mark, G., Gudith, D., and Klocke, U. (2008b). The Cost of Interrupted Work :
More Speed and Stress. In CHI 2008: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 107–110.

Mark, G., Iqbal, S., and Czerwinski, M. (2017). How blocking distractions
affects workplace focus and productivity. In Proceedings of the 2017 ACM

http://manictime.com

BIBLIOGRAPHY 291

International Joint Conference on Pervasive and Ubiquitous Computing and
Proceedings of the 2017 ACM International Symposium on Wearable Computers
on - UbiComp ’17, pages 928–934.

Mark, G., Iqbal, S. T., Czerwinski, M., and Johns, P. (2014). Bored mondays
and focused afternoons: The rhythm of attention and online activity in the
workplace. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 3025–3034. ACM.

Mark, G., Iqbal, S. T., Czerwinski, M., Johns, P., and Sano, A. (2016a). Email
Duration, Batching and Self-interruption: Patterns of Email Use on Productiv-
ity and Stress. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (CHI ’16), volume 21, pages 98–109.

Mark, G., Iqbal, S. T., Czerwinski, M., Johns, P., and Sano, A. (2016b). Neurotics
Can’t Focus: An in situ Study of Online Multitasking in the Workplace. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 1739–1744.

Mathan, S., Whitlow, S., Dorneich, M., Ververs, P., and Davis, G. (2007).
Neurophysiological estimation of interruptibility: Demonstrating feasibility in
a field context. In In Proceedings of the 4th International Conference of the
Augmented Cognition Society.

Mathur, A., Broeck, M. V. D., Vanderhulst, G., Mashhadi, A., and Kawsar, F.
(2015). Tiny Habits in the Giant Enterprise: Understanding the Dynamics of
a Quantified Workplace. In Proceedings of the Joint International Conference
on Pervasive and Ubiquitous Computing and the International Symposium on
Wearable Computers (Ubicomp/ISWC’15), pages 577–588.

Matthews, G. (2007). The impact of commitment, accountability, and written
goals on goal achievement. In 87th Convention of the Western Psychological
Association.

Mazmanian, M. (2013). Avoiding the trap of constant connectivity: When

292 BIBLIOGRAPHY

congruent frames allow for heterogeneous practices. Academy of Management
Journal, 56(5):1225–1250.

McDuff, D., Karlson, A., and Kapoor, A. (2012). AffectAura: an Intelligent
System for Emotional Memory. ACM.

McFarlane, D. (2002). Comparison of four primary methods for coordinating
the interruption of people in human-computer interaction. Human-Computer
Interaction, 17(1):63–139.

Melamed, S., Ben-Avi, I., Luz, J., and Green, M. S. (1995). Objective and
subjective work monotony: Effects on job satisfaction, psychological distress,
and absenteeism in blue-collar workers. Journal of Applied Psychology, 80(1):29.

Melo, C., Cruzes, D. S., Kon, F., and Conradi, R. (2011). Agile team perceptions
of productivity factors. In 2011 Agile Conference, pages 57–66. IEEE.

Menon, G. (1994). Judgments of behavioral frequencies: Memory search and
retrieval strategies. In Schwarz, N. and Sudman, S., editors, Autobiographical
Memory and the Validity of Retrospective Reports, pages 161–172. Springer.

Meyer, A., Barr, E. T., Bird, C., and Zimmermann, T. (2019). Today was a good
day: The daily life of software developers. IEEE Transactions on Software
Engineering, pages 1–1.

Meyer, A. N., Barton, L. E., Murphy, G. C., Zimmermann, T., and Fritz, T.
(2017a). The Work Life of Developers: Activities, Switches and Perceived
Productivity. Transactions of Software Engineering, pages 1–15.

Meyer, A. N., Fritz, T., Murphy, G. C., and Zimmermann, T. (2014). Software
developers’ perceptions of productivity. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2014, pages 19–29. ACM.

Meyer, A. N., Murphy, G. C., Zimmermann, T., and Fritz, T. (2017b). Design
recommendations for self-monitoring in the workplace: Studies in software
development. Proc. ACM Hum.-Comput. Interact., 1(CSCW):79:1–79:24.

BIBLIOGRAPHY 293

Meyer, A. N., Zimmermann, T., and Fritz, T. (2017c). Characterizing Software
Developers by Perceptions of Productivity. In Empirical Software Engineering
and Measurement (ESEM), 2017 International Symposium on.

MicrosoftGraphApi (2019). https://graph.microsoft.io. Retrieved March
19, 2019.

Milewski, A. E. and Smith, T. M. (2000). Providing presence cues to telephone
users. In Proceedings of the 2000 ACM conference on Computer supported
cooperative work, pages 89–96. ACM.

Minelli, R., Mocci, A., and Lanza, M. (2015). I KnowWhat You Did Last Summer
– An Investigation of How Developers Spend Their Time. Proceedings of ICPC
2015 (23rd IEEE International Conference on Program Comprehension), pages
25—-35.

Mintzberg, H. (1980). The nature of managerial work. Theory of management
policy series. Prentice-Hall.

Mirza, H. T., Chen, L., Chen, G., Hussain, I., and He, X. (2011a). Switch
detector: an activity spotting system for desktop. In Proceedings of the 20th
ACM international conference on Information and knowledge management,
pages 2285–2288. ACM.

Mirza, H. T., Chen, L., Hussain, I., Majid, A., and Chen, G. (2015). A study
on automatic classification of users’ desktop interactions. Cybernetics and
Systems, 46(5):320–341.

Mirza, H. T., Chen, L., Majid, A., and Chen, G. (2011b). Building user task space
by mining temporally proximate desktop actions. Cybernetics and Systems,
42(8):585–604.

Mockus, A. and Herbsleb, J. D. (2002). Expertise browser: a quantitative
approach to identifying expertise. In Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002, pages 503–512.

https://graph.microsoft.io

294 BIBLIOGRAPHY

Monk, C. A., Trafton, J. G., and Boehm-Davis, D. A. (2008). The effect of
interruption duration and demand on resuming suspended goals. Journal of
Experimental Psychology: Applied, 14(4):299–313.

Monkaresi, H., Calvo, R., Pardo, A., Chow, K., Mullan, B., Lam, M., Twigg, S.,
and Cook, D. (2013). Intelligent diabetes lifestyle coach. In OzCHI workshops
programme.

Moon, J. (2013). Reflection in Learning and Professional Development: Theory
and Practice. Taylor & Francis.

Morisano, D., Hirsh, J. B., Peterson, J. B., Pihl, R. O., and Shore, B. M.
(2010). Setting, elaborating, and reflecting on personal goals improves academic
performance. Journal of applied psychology, 95(2):255.

Muller, J. (2018). The Tyranny of Metrics. Princeton University Press.

Müller, S. C. and Fritz, T. (2015). Stuck and frustrated or in flow and happy:
Sensing developers’ emotions and progress. In Software Engineering (ICSE),
2015 IEEE/ACM 37th IEEE International Conference on, volume 1, pages
688–699. IEEE.

Munson, S. and Consolvo, S. (2012). Exploring Goal-setting, Rewards, Self-
monitoring, and Sharing to Motivate Physical Activity. Proceedings of the 6th
International Conference on Pervasive Computing Technologies for Healthcare,
pages 25–32.

Murgia, A., Tourani, P., Adams, B., and Ortu, M. (2014). Do developers
feel emotions? an exploratory analysis of emotions in software artifacts. In
Proceedings of the 11th Working Conference on Mining Software Repositories,
MSR 2014, pages 262–271. ACM.

Murphy, G. C., Kersten, M., Robillard, M. P., and Čubranić, D. (2005). The
emergent structure of development tasks. In ECOOP 2005 - Object-Oriented
Programming, pages 33–48. Springer Berlin Heidelberg.

BIBLIOGRAPHY 295

Murphy-Hill, E., Jaspan, C., Sadowski, C., Shepherd, D. C., Phillips, M., Winter,
C., Dolan, A. K., Smith, E. K., and Jorde, M. A. (2019). What predicts
software developers’ productivity? Transactions on Software Engineering.

Nair, R., Voida, S., and Mynatt, E. D. (2005). Frequency-based detection of task
switches. In Proceedings of the 19th British HCI Group Annual Conference,
volume 2, pages 94–99.

Naur, P. and Randell, B. (1969). Software engineering: Report of a conference
sponsored by the nato science committee. Scientific Affairs Division, NATO.

Nazar, N., Hu, Y., and Jiang, H. (2016). Summarizing software artifacts: A
literature review. Journal of Computer Science and Technology, 31(5):883–909.

Neter, J. and Waksberg, J. (1964). A study of response errors in expenditures data
from household interviews. Journal of the American Statistical Association,
59(305):18–55.

Nguyen, G. H., Bouzerdoum, A., and Phung, S. L. (2009). Learning Pattern
Classification Tasks with Imbalanced Data Sets. Pattern Recognition.

Niemantsverdriet, K. and Erickson, T. (2017). Recurring meetings: An experien-
tial account of repeating meetings in a large organization. Proceedings of the
ACM on Human-Computer Interaction, 1:1–17.

Oliver, N., Czerwinski, M., Smith, G., and Roomp, K. (2008). Relalttab: assisting
users in switching windows. In IUI.

Oliver, N., Smith, G., Thakkar, C., and Surendran, A. C. (2006). Swish: Semantic
analysis of window titles and switching history. In Proceedings of the 11th
International Conference on Intelligent User Interfaces, IUI ’06, pages 194–201.
ACM.

Origo, F. and Pagani, L. (2008). Workplace flexibility and job satisfaction: Some
evidence from europe. 29:539–566.

296 BIBLIOGRAPHY

Ouweneel, E., Le Blanc, P. M., Schaufeli, W. B., and van Wijhe, C. I. (2012).
Good morning, good day: A diary study on positive emotions, hope, and work
engagement. Human Relations, 65(9):1129–1154.

OxfordDictionary (2019). Oxforddictionary.
https://en.oxforddictionaries.com/definition/productivity. Retrieved
February 27, 2019.

Pammer, V., Bratic, M., Feyertag, S., and Faltin, N. (2015). The Value of
Self-tracking and the Added Value of Coaching in the Case of Improving Time
Management, pages 467–472. Springer International Publishing.

Parnin, C. and DeLine, R. (2010a). Evaluating cues for resuming interrupted
programming tasks. Proceedings of the 28th international conference on Human
factors in computing systems - CHI ’10, page 93.

Parnin, C. and DeLine, R. (2010b). Evaluating cues for resuming interrupted
programming tasks. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 93–102. ACM.

Parnin, C. and Rugaber, S. (2009). Resumption strategies for interrupted
programming tasks. In 2009 IEEE 17th International Conference on Program
Comprehension, pages 80–89.

Parnin, C. and Rugaber, S. (2011). Resumption strategies for interrupted
programming tasks. Software Quality Journal, 19(1):5–34.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011a). Scikit-
learn: Machine learning in python. Journal of machine learning research,
12(Oct):2825–2830.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.

BIBLIOGRAPHY 297

(2011b). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830.

Perlow, L. A. (1999). The time famine: Toward a sociology of work time.
Administrative science quarterly, 44(1):57–81.

Perry, D. E., Staudenmayer, N., and Votta, L. G. (1994a). People, organizations,
and process improvement. IEEE Softw., 11(4):36–45.

Perry, D. E., Staudenmayer, N. A., and Votta, L. G. (1994b). People, organiza-
tions, and process improvement. IEEE Software, 11(4):36–45.

Petrou, P., Demerouti, E., Peeters, M. C., Schaufeli, W. B., and Hetland, J.
(2012). Crafting a job on a daily basis: Contextual correlates and the link to
work engagement. Journal of Organizational Behavior, 33(8):1120–1141.

PomodoroTechnique (2019). pomodorotechnique.com. Retrieved March 19, 2019.

Prasad, A., Sorber, J., Stablein, T., Anthony, D., and Kotz, D. (2012). Under-
standing sharing preferences and behavior for mhealth devices. In Proceedings
of the 2012 ACM workshop on Privacy in the electronic society, pages 117–128.
ACM.

Prestwich, A., Perugini, M., and Hurling, R. (2009). Can the effects of implemen-
tation intentions on exercise be enhanced using text messages? Psychology
and Health, 24(6):677–687.

Prochaska, J. O. and Velicer, W. F. (1997). The Transtheoretical Change Model
of Health Behavior. American Journal of Health Promotion, 12(1):38–48.

Punter, T., Ciolkowski, M., Freimut, B., and John, I. (2003). Conducting on-line
surveys in software engineering. In International Symposium on Empirical
Software Engineering, 2003. ISESE 2003. Proceedings., pages 80–88. IEEE.

Racine, J. (2000). Consistent cross-validatory model-selection for dependent
data: hv-block cross-validation. Journal of econometrics, 99(1):39–61.

298 BIBLIOGRAPHY

Rattenbury, T. and Canny, J. (2007). Caad: An automatic task support system.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’07, pages 687–696. ACM.

Reinhardt, W., Schmidt, B., Sloep, P., and Drachsler, H. (2011). Knowledge
worker roles and actions - results of two empirical studies. Knowledge and
Process Management, 18(3):150–174.

RescueTime (2019). http://rescuetime.com. Retrieved March 19, 2019.

Robertson, G., Horvitz, E., Czerwinski, M., Baudisch, P., Hutchings, D. R.,
Meyers, B., Robbins, D., and Smith, G. (2004). Scalable fabric: Flexible task
management. In Proceedings of the Working Conference on Advanced Visual
Interfaces, pages 85–89. ACM.

Robertson, G., Van Dantzich, M., Robbins, D., Czerwinski, M., Hinckley, K.,
Risden, K., Thiel, D., and Gorokhovsky, V. (2000). The task gallery: a 3d
window manager. In Proceedings of the SIGCHI conference on Human Factors
in Computing Systems, pages 494–501. ACM.

Robillard, M. and Murphy, G. (2004). Program navigation analysis to support
task-aware software development environments. pages 83–88.

Robillard, M., Walker, R., and Zimmermann, T. (2010). Recommendation
systems for software engineering. IEEE Software, 27(4):80–86.

Rogelberg, S., Conway, J., E Sederburg, M., Spitzmuller, C., Aziz, S., and
E Knight, W. (2004). Profiling active and passive nonrespondents to an
organizational survey. The Journal of applied psychology, 88:1104–14.

Rožman, M., Treven, S., and Čančer, V. (2017). Motivation and satisfaction of
employees in the workplace. Business Systems Research Journal, 8.

Rooksby, J., Asadzadeh, P., Rost, M., Morrison, A., and Chalmers, M. (2016).
Personal Tracking of Screen Time on Digital Devices. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems, pages 284–296.

http://rescuetime.com

BIBLIOGRAPHY 299

Rooksby, J., Rost, M., Morrison, A., and Chalmers, M. (2014). Personal tracking
as lived informatics. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’14, pages 1163–1172.

Rule, A., Tabard, A., Boyd, K., and Hollan, J. (2015). Restoring the Context of
Interrupted Work with Desktop Thumbnails. In 37th Annual Meeting of the
Cognitive Science Society, pages 1–6. Cognitive Science Society.

Ruostela, J., Lönnqvist, A., Palvalin, M., Vuolle, M., Patjas, M., and Raij, A.-L.
(2015). ‘new ways of working’ as a tool for improving the performance of a
knowledge-intensive company. Knowledge Management Research & Practice,
13(4):382–390.

Sach, R., Sharp, H., and Petre, M. (2011). What makes software engineers go
that extra mile?

Sadowski, C. and Zimmermann, T. (2019). Rethinking Productivity in Software
Engineering. Apress.

Safer, I. and Murphy, G. C. (2007). Comparing episodic and semantic interfaces
for task boundary identification. In Proceedings of the 2007 conference of the
center for advanced studies on Collaborative research, pages 229–243. IBM
Corp.

Sahm, A. and Maalej, W. (2010). Switch! recommending artifacts needed next
based on personal and shared context. In Software Engineering (Workshops),
pages 473–484.

Samara, A., Galway, L., Bond, R., and Wang, H. (2017). Tracking and evaluation
of pupil dilation via facial point marker analysis. In 2017 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pages 2037–2043.

Sanchez, H., Robbes, R., and Gonzalez, V. M. (2015). An empirical study of work
fragmentation in software evolution tasks. In 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering, SANER 2015
- Proceedings, pages 251–260.

300 BIBLIOGRAPHY

Sappelli, M., Pasi, G., Verberne, S., De Boer, M., and Kraaij, W. (2016).
Assessing e-mail intent and tasks in e-mail messages. Information Sciences,
358-359:1–17.

Sarma, A., Noroozi, Z., and Van Der Hoek, A. (2003). Palantír: raising awareness
among configuration management workspaces. In Software Engineering, 2003.
Proceedings. 25th International Conference on, pages 444–454. IEEE.

Schwarz, N. and Oyserman, D. (2001). Asking Questions About Behavior: Cog-
nition, Communication, and Questionnaire Construction. American Journal
of Evaluation, 22(2):127–160.

Sharot, T., Korn, C. W., and Dolan, R. J. (2011). How unrealistic optimism is
maintained in the face of reality. Nature neuroscience, 14(11):1475.

Sharp, H., Baddoo, N., Beecham, S., Hall, T., and Robinson, H. (2009). Models
of motivation in software engineering. Information and software technology,
51(1):219–233.

Sheldon, K. M., Ryan, R., and Reis, H. T. (1996). What makes for a good day?
competence and autonomy in the day and in the person. Personality and
social psychology bulletin, 22(12):1270–1279.

Shen, J., Irvine, J., Bao, X., Goodman, M., Kolibaba, S., Tran, A., Carl, F.,
Kirschner, B., Stumpf, S., and Dietterich, T. (2009). Detecting and correcting
user activity switches: Algorithms and interfaces. pages 117–126.

Shen, J., Li, L., and Dietterich, T. G. (2007). Real-time detection of task switches
of desktop users. In IJCAI, volume 7, pages 2868–2873.

Shen, J., Li, L., Dietterich, T. G., and Herlocker, J. L. (2006). A hybrid learning
system for recognizing user tasks from desktop activities and email messages. In
Proceedings of the 11th International Conference on Intelligent User Interfaces,
IUI ’06, pages 86–92. ACM.

BIBLIOGRAPHY 301

Singer, J., Lethbridge, T., Vinson, N., and Anquetil, N. (2010). An examination
of software engineering work practices. In CASCON First Decade High Impact
Papers, CASCON ’10, pages 174–188. IBM Corporation.

Slife (2019). http://www.slifelabs.com. Retrieved March 19, 2019.

Smith, G., Baudisch, P., Robertson, G., Czerwinski, M., Meyers, B., Robbins,
D., and Andrews, D. (2003). Groupbar: The taskbar evolved. In Proceedings
of OZCHI, volume 3, pages 1–10.

Soto, C. J. and John, O. P. (2016). The Next Big Five Inventory (BFI-2):
Developing and Assessing a Hierarchical Model With 15 Facets to Enhance
Bandwidth. 113(June):117–143.

Soules, C. A. N. and Ganger, G. R. (2005). Connections: Using context to
enhance file search. In Proceedings of the Twentieth ACM Symposium on
Operating Systems Principles, SOSP ’05, pages 119–132. ACM.

Spencer, D. (2009). Card sorting: Designing usable categories. Rosenfeld Media.

Spira, J. B. and Feintuch, J. B. (2005). The cost of not paying attention: How
interruptions impact knowledge worker productivity.

StackOverflow (2017). Stackoverflow developer survey 2015. http://
stackoverflow.com/research/developer-survey-2015. retrieved January
16, 2017.

Steele, C. and Aronson, J. (1995). Stereotype threat and the intellectual test-
performance of african-americans. Journal of personality and social psychology,
69:797–811.

Stern, H., Pammer, V., and Lindstaedt, S. N. (2011). A preliminary study on
interruptibility detection based on location and calendar information. Proc.
CoSDEO, 11.

Stinson, L. L. (1999). Measuring how people spend their time: a time-use survey
design. Monthly Lab. Rev., 122:12.

http://www.slifelabs.com
http://stackoverflow.com/research/developer-survey-2015
http://stackoverflow.com/research/developer-survey-2015

302 BIBLIOGRAPHY

Stol, K.-J., Ralph, P., and Fitzgerald, B. (2016). Grounded theory in software
engineering research. Proceedings of the 38th International Conference on
Software Engineering - ICSE ’16, (Aug 2015):120–131.

Storey, M.-A., Singer, L., Cleary, B., Figueira Filho, F., and Zagalsky, A. (2014).
The (R)Evolution of Social Media in Software Engineering. In FOSE 2014
Proceedings of the on Future of Software Engineering, pages 100–116.

Storey, M.-A. and Zagalsky, A. (2016). Disrupting developer productivity one
bot at a time. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, pages 928–931.
ACM.

Storey, M.-A., Zagalsky, A., Figueira Filho, F., Singer, L., and German, D. M.
(2017). How social and communication channels shape and challenge a par-
ticipatory culture in software development. IEEE Transactions on Software
Engineering, 43(2):185–204.

Strauss, A. and Corbin, J. (1998). Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory.

Stricker, L. J. and Ward, W. C. (2004). Stereotype threat, inquiring about test
takers’ ethnicity and gender, and standardized test performance1. Journal of
Applied Social Psychology, 34(4):665–693.

Stumpf, S., Bao, X., Dragunov, A., Dietterich, T. G., Herlocker, J., Johnsrude,
K., Li, L., and Shen, J. (2005). Predicting user tasks: I know what you’re doing.
In 20th National conference on artificial intelligence (AAAI-05), workshop on
human comprehensible machine learning.

Sudman, S. and Bradburn, N. M. (1973). Effects of time and memory fac-
tors on response in surveys. Journal of the American Statistical Association,
68(344):805–815.

Sutherland, J., Viktorov, A., Blount, J., and Puntikov, N. (2007). Distributed
scrum: Agile project management with outsourced development teams. In Sys-

BIBLIOGRAPHY 303

tem Sciences, 2007. HICSS 2007. 40th Annual Hawaii International Conference
on, pages 274a–274a. IEEE.

Sykes, E. R. (2011). Interruptions in the workplace: A case study to reduce their
effects. International Journal of Information Management, 31(4):385–394.

Taillard, J., Philip, P., and Bioulac, B. (1999). Morningness/eveningness and
the need for sleep. Journal of Sleep Research, 8(4):291–295.

Tang, J. C., Yankelovich, N., Begole, J., Van Kleek, M., Li, F., and Bhalodia,
J. (2001). Connexus to awarenex: extending awareness to mobile users. In
Proceedings of the SIGCHI conference on Human factors in computing systems,
pages 221–228. ACM.

Tang, J. C., Zhao, C., Cao, X., and Inkpen, K. (2011). Your time zone or
mine?: a study of globally time zone-shifted collaboration. In Proceedings
of the ACM 2011 conference on Computer supported cooperative work, pages
235–244. ACM.

Tani, T. and Yamada, S. (2013). Estimating user interruptibility by measuring
table-top pressure. In CHI’13 Extended Abstracts on Human Factors in
Computing Systems, pages 1707–1712. ACM.

TimeDoctor (2019). https://timedoctor.com. Retrieved January 28, 2019.

Tims, M., Bakker, A. B., and Derks, D. (2012). Development and validation of
the job crafting scale. Journal of Vocational Behavior, 80(1):173 – 186.

Toscos, T., Faber, A., An, S., and Gandhi, M. P. (2006). Chick Clique :
Persuasive Technology to Motivate Teenage Girls to Exercise. In CHI ’06:
CHI ’06 extended abstracts on Human factors in computing systems, pages
1873–1878.

Tourangeau, R., Rips, L. J., and Rasinski, K. (2000). The psychology of survey
response. Cambridge University Press.

https://timedoctor.com

304 BIBLIOGRAPHY

Travers, C. J., Morisano, D., and Locke, E. A. (2015). Self-reflection, growth goals,
and academic outcomes: A qualitative study. British Journal of Educational
Psychology, 85(2):224–241.

Treude, C., Filho, F. F., and Kulesza, U. (2015). Summarizing and Measuring
Development Activity. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 625–636.

Treude, C. and Storey, M.-A. (2010). Awareness 2.0: staying aware of projects,
developers and tasks using dashboards and feeds. In Software Engineering,
2010 ACM/IEEE 32nd International Conference on, volume 1, pages 365–374.
IEEE.

Tulving, E. and Pearlstone, Z. (1966). Availability versus accessibility of infor-
mation in memory for words. Journal of Verbal Learning and Verbal Behavior,
5(4):381–391.

Tuten, T. L. and Bosnjak, M. (2001). Understanding differences in web usage:
The role of need for cognition and the five factor model of personality. Social
Behavior and Personality: an international journal, 29(4):391–398.

Van Der Voordt, T. J. (2004). Productivity and employee satisfaction in flexible
workplaces. Journal of Corporate Real Estate, 6(2):133–148.

Van Solingen, R., Berghout, E., and Van Latum, F. (1998). Interrupts: just a
minute never is. IEEE software, (5):97–103.

Vasilescu, B., Blincoe, K., Xuan, Q., Casalnuovo, C., Damian, D., Devanbu, P.,
and Filkov, V. (2016a). The sky is not the limit: Multitasking on GitHub
projects. In International Conference on Software Engineering, ICSE, pages
994–1005. ACM.

Vasilescu, B., Blincoe, K., Xuan, Q., Casalnuovo, C., Damian, D., Devanbu, P.,
and Filkov, V. (2016b). The Sky is Not the Limit: Multitasking on GitHub
Projects. pages 994–1005.

BIBLIOGRAPHY 305

Wagner, S. and Ruhe, M. (2008). A Systematic Review of Productivity Factors in
Software Development. In Software Productivity Analysis and Cost Estimation
(SPACE 2008), pages 1–6.

Wakatime (2019). http://wakatime.com. Retrieved March 19, 2019.

Walston, C. E. and Felix, C. P. (1977). A method of programming measurement
and estimation. IBM Systems Journal, 16(1):54–73.

Whiteside, S. P. and Lynam, D. R. (2001). The five factor model and impulsivity:
Using a structural model of personality to understand impulsivity. Personality
and Individual Differences, 30(4):669–689.

Whittaker, S., Hollis, V., and Guydish, A. (2016). Don’t Waste My Time: Use of
Time Information Improves Focus. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems (CHI ’16).

Whittaker, S. and Schwarz, H. (1999). Meetings of the board: The impact of
scheduling medium on long term group coordination in software development.
Computer Supported Cooperative Work (CSCW), 8(3):175–205.

Williams, A. C., Kaur, H., Mark, G., Thompson, A. L., Iqbal, S. T., and
Teevan, J. (2018). Supporting workplace detachment and reattachment with
conversational intelligence. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, page 88. ACM.

Wiseman, R. (2007). Quirkology: How we discover the big truths in small things.
Basic Books.

Wood, J. V. (1989). Theory and research concerning social comparisons of
personal attributes. Psychological Bulletin, 106(2):231–248.

Wu, I.-C., Liu, D.-R., and Chen, W.-H. (2005). Task-stage knowledge support:
coupling user information needs with stage identification. In IRI -2005 IEEE
International Conference on Information Reuse and Integration, Conf, 2005.,
pages 19–24.

http://wakatime.com

306 BIBLIOGRAPHY

Xia, X., Bao, L., Lo, D., Xing, Z., E. Hassan, A., and Li, S. (2017). Measuring
Program Comprehension: A Large-Scale Field Study with Professionals. IEEE
Transactions on Software Engineering, pages 1–26.

Zhou, M. and Mockus, A. (2010). Developer fluency: Achieving true mastery
in software projects. In Proceedings of the Eighteenth ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, FSE ’10, pages
137–146. ACM.

Zimmerman, B. J. (2006). Development and adaptation of expertise: The role of
self-regulatory processes and beliefs.

Zou, L. and Godfrey, M. W. (2012). An industrial case study of coman’s
automated task detection algorithm: What worked, what didn’t, and why. In
2012 28th IEEE International Conference on Software Maintenance (ICSM),
pages 6–14.

Züger, M., Corley, C., Meyer, A. N., Li, B., Fritz, T., Shepherd, D., Augustine,
V., Francis, P., Kraft, N., and Snipes, W. (2017). Reducing Interruptions at
Work: A Large-Scale Field Study of FlowLight. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems (CHI ’17), pages
61–72.

Züger, M. and Fritz, T. (2015). Interruptibility of software developers and
its prediction using psycho-physiological sensors. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems, pages
2981–2990. ACM.

Züger, M., Müller, S. C., Meyer, A. N., and Fritz, T. (2018). Sensing inter-
ruptibility in the office: A field study on the use of biometric and computer
interaction sensors. In CHI.

Curriculum Vitae

Personal Information
Name André N. Meyer
Nationality Swiss
Date of Birth May, 9, 1991
Place of Birth Uster, Switzerland

Education
2015 – 2019 Doctoral program in Informatics

Department of Informatics
University of Zurich, Switzerland

2013 – 2015 Master of Science in Informatics
Department of Informatics
University of Zurich, Switzerland

2009 – 2013 Bachelor of Science in Informatics
Department of Informatics
University of Zurich, Switzerland

	Synopsis
	Research Questions
	Research Approach and Main Findings
	RQ1: Examining Developer Work and Productivity
	RQ2: Increasing Self-Awareness to Foster Productivity
	RQ3: Increasing External Awareness to Foster Productivity

	Threats to Validity
	Challenges & Limitations
	Opportunities for Future Work
	Related Work
	Software Developer Workdays and Work Habits
	Fragmentation of Development Work
	Software Developer Productivity
	Characteristics and Habits of Successful Developers
	Fostering Behavior Change with Goal-Setting
	Self-Monitoring in the Workplace
	Self-Reflection in the Workplace
	External Indicators in the Workplace

	Summary of Contributions
	Thesis Roadmap

	The Work Life of Developers: Activities, Switches and Perceived Productivity
	Introduction
	Related Work
	Study Method
	Participants
	Procedure and Monitoring Application

	Data Collection and Analysis
	User Input Data
	Preparing Program Data and Mapping to Activities

	Results
	What Does a Developer Do?
	How Fragmented is the Work?
	Perceived Productivity Changes?
	What are Productive Activities?
	Summary of Results

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Discussion
	Individuality of Productivity
	Supporting Flow and Retrospection
	Scheduling a Productive Work Day
	Predicting High & Low Productivity
	Privacy Concerns

	Summary
	Acknowledgments

	Characterizing Software Developers by Perceptions of Productivity
	Introduction
	Related Work
	Methodology
	Data Collection
	Data Analysis

	Results
	Discussion
	Threats to Validity
	Conclusion
	Acknowledgements

	Today was a Good Day: The Daily Life of Software Developers
	Introduction
	Research Questions
	Related Work
	Influence of Job Satisfaction on Developers' Workdays

	Study Design
	Survey Development Using Preliminary Interviews
	Final Survey Design and Participants
	The Validity of Self-Reported Data

	Conceptual Frameworks
	Developers' Good Workdays
	Developers' Typical Workdays
	Interrelationship Between Good and Typical Days

	Quantitative Analysis
	Correlation Between Typical and Good Workdays
	Time Spent on Activities at Work
	Workday Types
	Collaboration

	Making Good Days Typical
	Optimizing Developer Workdays
	Agency: Manage Competition for Attention & Time
	Evaluation of Contributions at Work

	Threats to Validity
	External Validity
	Construct Validity
	Internal Validity

	Conclusion
	Acknowledgements

	Detecting Developers' Task Switches and Types
	Introduction
	Related Work
	Task Switch Detection
	Task Type Detection
	Task Support

	Study Design
	Study 1 – Observations
	Study 2 – Self-Reports

	Data and Analysis
	Collected Data
	Time Window Segmentation
	Task Switch Features Extracted
	Task Type Features Extracted
	Outcome Measures
	Machine Learning Approach

	Results: Detecting Task Switches
	Task Switch Detection Accuracy
	Task Switch Feature Evaluation
	Descriptive Statistics of the Dataset

	Results: Detecting Task Types
	Identified Task Type Categories
	Task Type Detection Accuracy
	Task Type Feature Evaluation
	Descriptive Statistics of the Dataset

	Discussion
	Improving Task Switch and Type Detection
	Applications for Automated Task Detection

	Threats to Validity
	Conclusion
	Acknowledgements

	Design Recommendations for Self-Monitoring in the Workplace: Studies in Software Development
	Introduction
	Related Work
	Designing and Evaluating Self-Monitoring Tools for Work

	Phase 1 Method: Identifying Design Elements
	Pilots
	Initial Survey

	Phase 1 Results: Identified Design Elements
	A: Supporting Various Individual Needs
	B: Active User Engagement
	C: Enabling More Multi-Faceted Insights

	Phase 2 Method: Evaluating Design Elements
	Participants
	Procedure
	Data Collection and Analysis

	Phase 2 Results: Design Recommendations Based on Evaluating Design Elements
	Different Granularity of Visualizations
	Interest in Diverse Set of Measurements
	Increasing Self-Awareness with Experience Sampling
	Increasing Self-Awareness with a Retrospection
	Personalized Insights
	Potential Impact on Behavior at Work

	Discussion
	Design for Personalization
	Increased Engagement through Experience Sampling
	Actionability for Behavior Change
	Benchmarking
	Team-Awareness

	Generalizability and Limitations
	Conclusion
	Acknowledgements

	Enabling Good Work Habits in Software Developersthrough Reflective Goal-Setting
	Introduction
	Related Work and Background
	Study Design
	Developers' Work Habit Goals and Strategies (RQ1, RQ2)
	Improve time management (G1)
	Avoid (self-induced/external) deviation from planned work (G2)
	Improve impact on the team (G3)
	Maintain work-life balance (G4)
	Learn (G5)

	Potential Impact of Reflective Goal-Setting (RQ3)
	Self-Reflections can Help to Identify Concrete Goals and Actionable Strategies
	Self-Reflection can Increase Awareness on Goal Achievement and Productive Habits
	Reflective Goal-Setting can Increase Productivity and Well-Being
	Help Developers to Help Themselves

	Summary of Results
	Discussion
	Threats to Validity
	Conclusion
	Acknowledgements

	Reducing Interruptions at Work:A Large-Scale Field Study of FlowLight
	Introduction
	Related Work
	Measuring Interruptibility

	Approach and Implementation
	Evaluation
	Study Procedure
	Participants
	Data Collection and Analysis

	Results
	Reduced Cost of Interruptions
	Increased Awareness of Interruption Cost
	Feeling of Increased Productivity and Self-Motivation
	Costs of Using the FlowLight
	Automatic State Changes and Accuracy
	Continued Usage of FlowLight
	Professional Differences in Using the FlowLight

	Discussion
	Reasons for FlowLight's Positive Effects
	Accuracy of Automatic Interruptibility Measure
	Cost of Not Interrupting
	Threats and Limitations

	Conclusion
	Acknowledgments

